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Place �elds in rat hippocampus consist of both a �ring-rate component [6] and a 
temporal component de�ned by spike-phase precession relative to local theta [7]. 
Models based on oscillatory phase interference [e.g., 4 and 5] can account for 
phase precession, but not for the remapping that can occur when an animal is ex-
posed to novel spatial information. Cue manipulations can induce partial remap-
ping and gradual spatial recoding in which some degree of coherence with previ-
ous representations is retained.

Double-rotation experiments, in which sets of local and distal cues are rotated rela-
tive to each other around a circular track, have shown that activity in the CA3 sub-
region is signi�cantly more coherent than in CA1 [3]. Thus, it is critical to our under-
standing of hippocampal function to have models of spatial coding that can ex-
plain graded remapping as well as all-or-none complete remapping. While 
somato-dendritic dual-oscillator models have been examined [4, 5], it is not clear 
how to couple them with environmental cues to explore these sorts of e�ects. We 
demonstrate a more recent generalization of oscillatory interference models fea-
turing multiple oscillator inputs [1]. Each oscillator’s phase is modulated by the ve-
locity vector of the trajectory such that the population phase code provides stable 
path integration.

First, we show that arbitrarily connected output units can produce spatially-
modulated activity. Second, we demonstrate a cue-based phase-code feedback 
that represents learned �xed-points of the trajectory. This makes spatial represen-
tations robust to noise, but also allows cue manipulations similar to double-
rotation experiments. 

Abstract

Simulating double-rotation using actual trajectories, we found that the diversity of 
remapping behavior among the output population depended on the number of 
cues, the feedback gain and the relative contributions of path integration and 
phase-code feedback. We found a diversity of both cue-following and ambiguous 
outputs qualitatively similar to the experimental data using moderate overall feed-
back gain and a small number of moderately sized cues. Further, asymmetry in cue 
con�guration can bias mismatch responses similar to the local cue control exerted 
on CA3 place cell activity.

Recent intracellular recordings of place cells demonstrated increased theta power 
within-�eld and intracellular phase precession relative to extracellular theta [2], 
both of which result from this model. The multiple oscillator model provides in-
sight into phase code mechanisms that may underlie a wide array of rate and tem-
poral coding e�ects and remapping phenomena in hippocampus.
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Fig. 1. Schematic of the double-rotation experimental paradigm in which sets of 
local and distal cues are put into con�ict. Mismatch (MIS) sessions presenting cue 
con�ict are interleaved with standard (STD) sessions presenting the familiar cue con-
�guration. The spiking activity (middle) and linearized �ring rate maps (bottom) of a 
CA3 place cell (rat 72, day 1, tetrode 11, cluster 8 from [3]) are shown across the �ve 
sessions of an experiment.

Fig. 2. Single-unit responses of CA3 place cells (N=5 rats, data recorded by I. Lee [3] and 
J. Neunuebel) across varying angles of cue mismatch. The rotation angle corresponding 
to peak �ring-rate correlation for each place cell is plotted against that peak correlation 
(top row) to show that most CA3 place cells follow the counter-clockwise rotation of the 
local cues while maintaining coherent place �elds. The proportion of locally controlled 
units is substantially larger than distal across tested angles (bottom). 

Fig. 3. Population responses of active place units from a simulation of 100 randomly 
connected outputs and 1000 theta oscillator inputs with 5% feedforward connectiv-
ity (bottom row). Firing rate response matrix (left) and place-�eld delineations 
(middle) are shown, in addition to the spatial auto-correlation matrix (right). The 
output of the multiple oscillator model qualitatively matches the sparsity and place-
like activity of rat hippocampus.

Fig. 4. Trajectory plots of the currently active cue (left) and the coe�cient of cue-
interaction (right) for an example cue con�guration consisting of four small cues. 
Cues are evenly distributed around the track and local and distal cues are o�set so 
that they are interleaved within STD (non-mismatch) session simulations. 

Fig. 8. Population correlation shifts (middle) and unit response change proportions (right) are shown 
for a variety of cue con�gurations (left). Di�erent cue representations enable di�erences in population 
code coherence, cue-following and remapping characteristics across mismatch angles. Cue asymme-
tries are shown here in cue size (compare �rst and second rows) and in the number of cues (last three 
rows). Large numbers of small cues enable frequent updating of the phase code relative to local cues 
and is able to provide consistent local cue-control as seen in CA3.

Fig. 5. Population response changes to an example double-rotation mismatch simulation where 
local and distal cues (top left) are rotated 90   relative to each other. Responses (right) are shown as 
population ratemaps (top) and auto- and cross-correlation matrices (bottom). Single unit rotations 
and peak correlation (bottom left) demonstrate both local and distal cue control with this symmet-
ric cue con�guration consisting of relatively small cues. 
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Governing phase equation for array of N velocity-modulated theta oscillators:

where, for preferred directions φ and spatial scales λ,

and phase modulation is driven by the velocity vector of the animal’s trajectory
through the environment: 

This form of path integration provides a stable spatial signal, in the absence of 
noise, in the amplitude envelope of summation of multiple oscillators.
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From a real circle-track trajectory, we use the velocity vector over time,

to modulate the phase of the oscillators such that varying synchronicity among the
oscillators produces stable spatial �uctuations:
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where the summed input oscillations for some output unit i is 

with the signal envelope
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Mapped back to the trajectory, the peak 
synchronization of the input oscillators provides 
the local spatial activity necessary for a 
place �eld.

A threshold then determines output �ring rate:
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We add negative feedback terms to the phase equation for both local and distal sets
of external cues:

so the phase equation becomes

where C is a cue-interaction coe�cient modulating the phase feedback,            is a 
learned phase target for the currently active cue (targets are stored on a training lap), 
and           is the phase code at time t.
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Fig. 9. Using the same cue con�guration as the second row of Fig. 8 (three local and 
distal cues, with larger local cues), the mismatch simulations were performed at incre-
ments of 10-degrees. Single-unit rotations and peak correlations (top rows) show the 
emergence of both local and distal cue followers, though more follow the larger local 
cues. The population correlation shifts (bottom left) and response distributions 
(bottom right) show stable points in the response changes.
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Fig. 2. Population auto-correlation matrix for the STD session (top left) and cross-
correlation matrices with the  90- and 135-degree MIS sessions (top middle, right). Data 
aggregated across N=5 rats (I. Lee [3] and J. Neunuebel). The coherent rotation of the 
population code is evident in the shifting diagonal band of correlation in the cross-
correlations. These diagonal correlations are linearized (bottom) for visualization of the 
peak correlation shift.  
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