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We presented network and statistical models that outlined a novel mechanism for anchoring spatial representations in 
continuous regions of neural synchrony. We recorded theta cells from hippocampal and subcortical areas in exploring rats 
and found spatial responses, comprising strong negative (phase precessing) and weaker positive (phase processing) 
rate-phase correlations. A space/trajectory GLM showed that trajectory dependence and potential behavioral biases were 
dominated by pure spatial factors in these cells. Biological phasers were found in hippocampus and lateral septum, but 
not thalamic sites. Lateral septal cells are well-placed to combine theta oscillations and spatial inputs as required for the 
phaser mechanism. While our data-driven simulations of 2D phasers showed constrained spatial tuning, training with 
path-integrating phase codes flexibly produced border-aligned regions of phase synchronization that could contribute to 
the role of border visits in correcting (or distorting) [5] the spatial metric carried by grid cells. Our results reveal a possible 
role for spatial theta cells in anchoring the hippocampo-entorhinal spatial metric, but analogous rate-to-phase conversion 
mechanisms may subserve other brain systems with externally-referenced intrinsic neural codes.
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Introduction

1D phase-coding synchronization

How can environmental cues reset a neural code for space? Path integration is the 
idiothetic process, analogous to angular integration for head direction [1,2], that 
guides the neural code for position using egocentric motion signals. Interacting 
with external sensory cues is critical for path integration to remain calibrated within 
a fixed spatial reference frame [3,4]. Rather than abrupt resets, the calibration of 
the spatial metric reflected by grid cells may be predominantly mediated by 
boundaries [5] in a way that reflects continuous gating between extrinsic and 
intrinsic information streams [6,7]. It is unclear whether some form of place-to-grid 
feedback could support continous spatial calibration. 

Which pathway could place-to-grid feedback take? The hippocampus forms 
bidirectional loops with subcortical structures that regulate the septal-hippocampal 
theta rhythm (6–10 Hz) [8,9]. Theta-rhythmic activity propagates through the 
circuits of the septum, mammillary bodies, and anterior thalamus via excitatory 
burst synchronization [10-12]. Here we study the hypothesis that theta bursting and 
spatial inputs create a spatial phase code that supports flexible learning of spatial 
synchronization patterns. We recorded theta cells from a constellation of 
hippocampal and subcortical areas in freely exploring rats to look for spatial phase 
information and rate-phase correlations. Recordings took place in an 80-cm 
cylindrical arena with an orienting visual cue and lasted multiple hours to allow 
adequate sampling of spikes (n=8 rats, mean 15.5 spikes/s) given spatial biases in 
exploratory behavior. To establish that spatial modulation was not due to 
behavioral biases, we trained generalized linear models (GLMs) to predict spikes 
based on spatial and trajectory-based factors. To demonstrate spatial 
synchronization patterns, we modeled intrinsic theta bursting in oscillatory 
neuronal network models trained with path-integrating phase codes (cf. [13,14]). 

Fig. 1. A motivating theory for spatial phase codes expressed as correlations 
between firing rate and phase. (A) Spatial input (black) drives a theta cell with 
theta-rhythmic inhbition (blue) which suppresses a theta cell with theta-rhythmic 
excitation (orange). Model bursting neurons change rate and theta phase with 
low vs. high spatial inputs. (B) This simple connectivity scheme creates strong 
negative correlations between rate and phase and weaker positive correlations.

Fig. 2. We recorded subcortical theta cells in rats exploring an 80-cm cylindrical arena. Spikes 
from an example cell in lateral septum (A) were strongly modulated by space (B) while showing 
strong theta-rhythmic correlations (C) and a preference for anti-phase firing (D). The average 
phase of firing across space (E) reveals stronger phase coherence (F) near the arena center. 
Activity switches from in-phase single spikes (G, top) to anti-phase bursts (G, bottom) during 
periods of low and high spatial modulation, as reflected in the negative rate-phase correlation (H).

Fig. 5. Spatial phase-coding ‘phaser’ cells divide into ‘negative’ (A) and ‘positive’ (B) 
subtypes based on the direction of rate modulation of firing phase. (A,B) Example cells 
have firing ratemaps (top), phase-coherence maps (middle), and spatial rate/phase 
regressions (bottom). Negative phasers have stronger spatial modulation than positive.

Fig. 6. The GLM was trainevd on a 3 x 3 grid that evenly partitioned the arena to 
expose possible directional inhomogeneities reflecting behavioral biases. (A) Model 
weight (left) was dominated by linear/quadratic (L, Q) functions of space. Maximal 
contributions of variables showed reduced trajectory-dependence in phasers relative to 
nonphaser cells. (B) GLM-predicted reconstructions of ratemaps from Fig. 5A.

To participate in a path integration system, phase modulation must either be 
nondirectional or uniformly directional across space. To reveal whether spatial activity 
reflected behaviorally and directionally unbiased environmental cues, we trained a 
generalized linear model (GLM) to predict spike counts on the basis of spatial (L/Q, 
linear/quadratic; W, wall proximity) and trajectory-based (S, speed; D, direction) variables:

Fig. 3. Calculating the mutual information between space and phase reveals broadly distributed 
rate-phase correlations. (A) 233/840 theta cell recordings had significant spatial phase information 
(blue, left). Significant spatial cells showed heavier tails for correlation coefficient (middle) and total 
regressed phase shift (right). (B) Higher spatial phase information (x-axis) corresponds to larger 
regressed negative and positive phase shifts (y-axis) in spatial cells (blue circles, size indicates 
correlation strength). Nonsignificant cells (contours) were distributed around zero shift.

Fig. 4. ‘Phaser’ cells are selected (101/233 spatial 
recordings) based on spatial phase information and 
phase shift criteria (Fig. 3B). (A) Phasers have a 
restricted range of peak firing rates (left) and slightly 
weaker theta rhythmicity (right) compared to spatial 
nonphasers. (B) Negative (blue) and positive (orange) 
phasers take opposing phase trajectories across 
firing rates (left) and segregate across the theta 
cycle on the basis of preferred firing phase (right). 
(C) Phaser cells were predominantly found in the 
septum and primarily lateral septum, constituting 
13.2% of septal recordings.

Fig. 1 (cont’d). Competitive learning of weights from negative/positive 
phase-coding cells with distributed spatial tuning allows synchronization to a 1D 
spatial phase code (gray rectangles). We simulated an intrinsic theta-bursting 
neuron model with competitive spatial-phase coding weights as a spatial 
trajectory moved back-and-forth between 0 and 1. Blue dots represent individual 
bursts from this target bursting neuron for 1-hour simulations with various 
synchonization gains: from none (top left) to strong feedback (bottom right).
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Fig. 7. A low-dimensional spatial model of phaser cell inputs was derived from the GLM (Fig. 6). (A) Generative 
spatial inputs drove simulations of negative and positive phaser cells (left, 50 example ratemap/phasemap pairs 
shown out of 1,000). (videos) Intrinsic theta-bursting neurons were the target of the synchronizing input from the 
phaser populations. With competitive learning, 64 targets simultaneously learned a spectrum of path-integrating 
spatial phase codes across spatial offsets and preferred directions. (B) The target cell (left) learns phase codes 
(middle columns) to create spatial synchronization patterns (right).
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