Spatial rate-phase coding in lateral septal ‘phaser cells’:
single-unit data and theta-bursting models
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Abstract Symmetric phase codes represent 2D spatial isocontours
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hippocampus and grid cells in medial entorhinal cortex are temporally organized by continuous theta oscillations puts { )

(5-12 Hz). The theta rhythm is regulated by subcortical structures including the medial septum, but it is unclear how | 27 - Phase advance Phase delay

spatial information from place cells may reciprocally organize subcortical theta-rhythmic activity. Here we recorded ® \ ; /ﬁﬁ\ )
single-unit spiking from a constellation of subcortical and hippocampal sites to study spatial modulation of 8 \ “’
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pattern. In our dataset, phaser cells were predominantly located in the lateral septum, but also the hippocampus, @ / V/ ‘ HL H H‘ HH H ‘ ‘ ‘ ‘ §
anteroventral thalamus, lateral hypothalamus, and nucleus accumbens. Unlike the unidirectional late-to-early phase o eN® * ° =
precession of place cells, bidirectional phase modulation acted to return phaser cells to the same theta-phase 0 é é é 1|2 Integration || Spikes

along a given spatial isocontour, including cells that characteristically shifted to later phases at higher firing rates. Mean firing rate (spikes/s) delay ® ® © Bursts (ordered)

Our dynamical models of intrinsic theta-bursting neurons demonstrated that experience-independent temporal
coding mechanisms can qualitatively explain (1) the spatial rate-phase relationships of phaser cells and (2) the

observed temporal segregation of phaser cells according to phase-shift direction. In open-field phaser cell Single-neuron models Of Phaser Ce”s & downstream ta rgets

simulations, competitive learning embedded phase-code entrainment maps into the weights of downstream targets,

including path integration networks. Bayesian phase decoding revealed error correction capable of resetting path A Simple circuit of phaser cell subtypes:

: el Downstream target neuron model:
Negative suppresses positive

B Input-driven phase shifts G e G et Borster with voltage noise

integration at subsecond timescales. Our findings suggest that phaser cells may instantiate a subcortical | N High
theta-rhythmic loop of spatial feedback. We outline a framework in which location-dependent synchrony reconciles % //” |
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Quantitative selection of ‘phaser cell’ recordings
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Future work: Sharp-wave sequences and gamma oscillations
Temporal segregation, phase information, and brain location | in spiking attractor-map networks

To study trajectory sequences that ‘hover’ at discrete location during peaks in the slow-gamma rhythm (Pfeiffer &

Negative vs. positive phaser cell theta-phase segregation Hippocampal vs. subcortical spike-trajectory mutual information Foster, 2015), we have developed a CA3-like recurrent excitatory/inhibitory network model of quadratic ‘place cells’
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Phase-coding subtype across recording locations Phaser cells across septal sites B. E. Pfeiffer & D. J.
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Recording Area Negative Positive Mixed None Total 0 Negative . L.
144 1 Positive Autoassociative
Lateral septum 31(9.7%) 17 (5.3%) 2 (0.6%) 287 (84.4%) 321 dynamics in the —
Medial septum - - - 16 (100.0%) 16 127 N aneration of £
Hippocampus 11 (12.4%) 4 (4.5%) - 74 (83.1%) 89 -E 10 2 f >
Thalamus 1(2.2%) - - 45 (97.8%) 46 S gl :\?quences O el
Midbrain 1(0.7%) - - 134 (99.3%) 135 8 . — Ippoca!mpa place
Other 1(1.6%) - 1 (1.6%) 62 (96.8%) 64 | | ] cells. Science,
Total 45 (6.7%) 21 (3.1%) 3 (0.4%) 602 (89.7%) 671 ] 349:180-3.
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Columns: ‘Negative’/Positive’, cells with at least one negative/positive phaser-classified recording and none of the other subtype; ‘Mixed’, cells with at least one negative ) H l:! I_I_‘ H
and at least one positive phaser-classified recording; ‘None’, cells with no phaser-classified recordings. IG LS LSD LSl NK  gec
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