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Future work: Sharp-wave sequences and gamma oscillations 
in spiking attractor-map networks

Example neuron from lateral septum with rate-phase code

Quantitative selection of ‘phaser cell’ recordings

Temporal segregation, phase information, and brain location

Symmetric phase codes represent 2D spatial isocontours

Single-neuron models of phaser cells & downstream targets

Position-coding by collectively entrained target networks

Abstract
During spatial navigation, the frequency and timing of spikes from spatial neurons including place cells in 
hippocampus and grid cells in medial entorhinal cortex are temporally organized by continuous theta oscillations 
(5–12 Hz). The theta rhythm is regulated by subcortical structures including the medial septum, but it is unclear how 
spatial information from place cells may reciprocally organize subcortical theta-rhythmic activity. Here we recorded 
single-unit spiking from a constellation of subcortical and hippocampal sites to study spatial modulation of 
rhythmic spike timing in rats freely exploring an open environment. Our analysis revealed a novel class of neurons 
that we termed ‘phaser cells,’ characterized by a symmetric coupling between firing rate and spike theta-phase. 
Phaser cells encoded space by assigning distinct phases to allocentric isocontour levels of each cell's spatial firing 
pattern. In our dataset, phaser cells were predominantly located in the lateral septum, but also the hippocampus, 
anteroventral thalamus, lateral hypothalamus, and nucleus accumbens. Unlike the unidirectional late-to-early phase 
precession of place cells, bidirectional phase modulation acted to return phaser cells to the same theta-phase 
along a given spatial isocontour, including cells that characteristically shifted to later phases at higher firing rates.  
Our dynamical models of intrinsic theta-bursting neurons demonstrated that experience-independent temporal 
coding mechanisms can qualitatively explain (1) the spatial rate-phase relationships of phaser cells and (2) the 
observed temporal segregation of phaser cells according to phase-shift direction. In open-field phaser cell 
simulations, competitive learning embedded phase-code entrainment maps into the weights of downstream targets, 
including path integration networks. Bayesian phase decoding revealed error correction capable of resetting path 
integration at subsecond timescales. Our findings suggest that phaser cells may instantiate a subcortical 
theta-rhythmic loop of spatial feedback. We outline a framework in which location-dependent synchrony reconciles 
internal idiothetic processes with the allothetic reference points of sensory experience.
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‘Negative’ subtype: Precession against ratePhase information and phase-shift thresholds

Vector length reflects phase-code stability

Negative vs. positive phaser cell theta-phase segregation

Phase-coding subtype across recording locations Phaser cells across septal sites

Hippocampal vs. subcortical spike-trajectory mutual information

Model: Decoded spatial trajectory toward goal 
area during population burst

Data

Model: Decoded spatial trajectory around 
wall/obstacle during population burst

‘Positive’ subtype: ‘Procession’ against rate
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Simple circuit of phaser cell subtypes: 
Negative suppresses positive Input-driven phase shifts

Negative phaser rate/phase maps

Multiplexed learning of phase-code spectra: Path-integration calibration function

To study trajectory sequences that ‘hover’ at discrete location during peaks in the slow-gamma rhythm (Pfeiffer & 
Foster, 2015), we have developed a CA3-like recurrent excitatory/inhibitory network model of quadratic ‘place cells’ 
that produces sharp wave-like population bursts and gamma oscillations. The activity during the population bursts can 
be decoded into allowable spatial trajectories that find goals and avoid obstacles. 

Positive phaser rate/phase maps Competitive learning of a 2D phase code

Subsecond timescale of error correction

Downstream target neuron model:
Intrinsic theta-burster with voltage noise
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