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ABSTRACT

The rise of mobile multi-agent robotic platforms is outpacing control paradigms for tasks that require operating
in complex, realistic environments. To leverage inertial, energetic, and cost benefits of small-scale robots, critical
future applications may depend on coordinating large numbers of agents with minimal onboard sensing and
communication resources. In this article, we present the perspective that adaptive and resilient autonomous
control of swarms of minimal agents might follow from a direct analogy with the neural circuits of spatial cognition
in rodents. We focus on spatial neurons such as place cells found in the hippocampus. Two major emergent
hippocampal phenomena, self-stabilizing attractor maps and temporal organization by shared oscillations, reveal
theoretical solutions for decentralized self-organization and distributed communication in the brain. We consider
that autonomous swarms of minimal agents with low-bandwidth communication are analogous to brain circuits of
oscillatory neurons with spike-based propagation of information. The resulting notion of ‘neural swarm control’
has the potential to be scalable, adaptive to dynamic environments, and resilient to communication failures and
agent attrition. We illustrate a path toward extending this analogy into multi-agent systems applications and
discuss implications for advances in decentralized swarm control.

Keywords: distributed control, self-organization, swarming, spatial navigation, neuroscience, synchrony,
emergence, place cells

1. INTRODUCTION

The rise of mobile multi-agent robotic platforms may potentially exponentiate the breadth of applications of
autonomous technologies, but current control paradigms lack resilience and versatility in real-world environments.
We suggest that this gap relates to the need to dynamically replan distributed responses to rapidly changing
surroundings or other situational and task-relevant variables. Environmental, perceptual, and state-based sources
of uncertainty may be defining features of critical future applications that could most benefit from the agility
of low-footprint vehicle platforms. Crucially, solutions to online spatial decision-making in uncertain conditions
have evolved in animals such as rodents whose daily survival depended on navigating to find food, take shelter,
and escape predators.

The hippocampus is the center of lifelong memory formation in mammals including humans,1 but research
interest in this brain structure intensified after hippocampal neurons, known as ‘place cells,’ were discovered
to carry a clear signal representing the animal’s current spatial location.2 This was the first link in modern
neuroscience3 between high-order cognition (e.g., the sense of place) and the output of single neurons (i.e., the
‘place field’ in which a place cell is active). Two major hippocampal phenomena, self-stabilizing attractors of
spatial activity and temporal coding during shared oscillations, arise from the circuit-wide connectivity and
collective activity of hippocampal networks.4–6 We suggest that these two phenomena outline possible brain-
like control strategies for artificial swarms. Neurobiological circuits contend with noise, communication failures,
and multi-level/multi-modal sources of variability and uncertainty in both perceptual and motivational states.
Similarly, a ‘neural swarm control’ framework may confer adaptive resilience to critical real-world applications
of autonomous multi-agent systems.
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2. MOTIVATION

The growing development of multi-agent platforms with lightweight robotic vehicles may greatly expand the
application domain of autonomous technologies, but current control frameworks lack adaptiveness, resilience,
and computational efficiency, especially in complex, realistic, and dynamically changing conditions.7–10

2.1 Limitations of state-of-the-art swarm control

At the level of algorithmic design, swarm control can be characterized by an intrinsic three-way trade-off between
computational efficiency, stability, and performance.10 However, a more pragmatic trade-off driven by agent scale
(e.g., physical size, mass, energy footprint/capacity) has similarly wide-ranging ramifications for computational
control. Specifically, agent scale trades off against the degree of baseline autonomous capabilities allowed by
onboard hardware (Fig. 1). While robotic vehicles are being engineered at scales spanning orders of magnitude,
lower-footprint agents provide many benefits. With lower mass, agents have higher maximum angular acceleration
and lower kinetic energy, which increases both safety and agility due to faster turning and velocity changes.11

However, lower vehicle and payload weights restrict the diversity, range, and capacity of the onboard sensor suite
that is critical to control, perception, and state estimation in autonomous applications.

Figure 1. The trade-off between agent scale and autonomy. Orders of magnitude differences in the scale of engineered
robotic vehicles entail a wide range of sensing and communication capacities. The benefits of increased agility, safety, and
maneuverability attained by reducing agent scale come at the expense of lower baseline autonomous capabilities of those
vehicles. If the solution is a numerical increase in group size, then scalable, decentralized, and resilient control presents
the crucial challenge. Inset (top left): This challenge might be approached by directly considering large swarms of small,
limited agents that act as neurons in the spatial cognitive circuits of foraging animals such as rats.

The question becomes how to achieve high autonomy with small and functionally limited robots (Fig. 1,
inset). Since smaller vehicles tend to have lower marginal costs, a promising approach is to scale up the number
of robotic agents in an autonomous group as the size and computational complexity, etc., of the agents are
scaled down. Current state-of-the-art approaches to autonomous control of large robotic swarms utilize fast
onboard processors to continuously estimate state and compute optimal motion plans via exhaustive search over
the space of possible trajectories with respect to neighboring agents and the environment at rates on the order
of 1 kHz [e.g., 11]. If this represents a ceiling of computational power, then the resilience and adaptiveness
of swarms in this regime (i.e., characterized by larger numbers of smaller, simpler agents) may benefit from
alternative methodological approaches.



2.2 Place cells and self-organizing attractor maps

We conjecture that this inverse scaling of number and complexity may reflect, in the limit, biological solutions in
evolved living systems that address the problem of collective goal-directed dynamics with strictly local informa-
tion. For instance, the distributed neuronal networks in the brains of rodents seeking out food rewards (Fig. 1,
inset) must integrate diverse and uncertain sources of information in order to produce a unified spatial plan for
foraging and other spatial tasks. These neural computations in a rodent brain are limited to the interactions of
∼750,000 hippocampal neurons12 (cf. ∼1e9 transistors in the Qualcomm R© SnapdragonTM 801 processor used in
some quadrotor vehicles), each of which gradually build up sufficient capacitive charge across their cellular lipid
bilayer membranes to generate an action potential (or ‘spike’) at a typical frequency (rate of occurrence, or ‘firing
rate’) on the order of 1 Hz.2,13 This qualitatively different form of computation, without high sample rates or
global optimization procedures, nonetheless allows a rat to make the spatial decisions that enable survival up to
several years in the wild, during which it is always exploring farther out from home base.14

Hippocampal place cells, as described above, each fire within a restricted spatial region of the environment.2

For example, a single place cell in a rat running laps on a circular track (Fig. 2A, top row) forms a new place field
after an investigatory behavior in which the rat paused to visually examine the environment (Fig. 1, inset). This
example shows a recently characterized behavioral-attentional mechanism of place field formation.15 Typically, it
is not possible to discern which factors, external or internal, determine the location of a place field; regardless, the
place fields of a population of place cells collectively form a map of the animal’s current environment3 (Fig. 2A,
bottom row). A prominent theory of the stability of these spatial maps posits that attractor dynamics, including
fixed points or continuous manifolds, drive place cell networks to represent low-dimensional spatial contexts.4

The idea is rather parsimonious, because models have shown that recurrent connectivity between place cells that
perform nonlinear integration of their inputs, e.g.,

dri
dt

= −ri + g

∑
j

Jijrj + Ii

 , (1)

where ri is the firing rate of place cell i, Ii is its external spatial input, and g is a sigmoidal nonlinearity, is nearly
sufficient to achieve a stable attractor map.16,17 The only additional requirement is that the recurrent weights
Jij represent the learned spatial associations between place cells (e.g., the degree of overlap between place fields)
as a decrementing function of distance between place field centers x, such as

Jij := F (xi − xj) = Wexc e−
|xi−xj |

σ −Winh , (2)

where σ is the spatial scale of an exponential kernel and W· are the maximum excitatory and inhibitory synaptic
strengths (note that this violates Dale’s law, which states that neurons only make connections of one type,
and only serves to illustrate the expressiveness of the notion of attractor maps).17 A network constructed
following Eqs. (1) and (2) supports self-organization of its activity into a singular, contiguous ‘bump’ that is
anchored to the spatial attractor. Following random initialization, the activity bump will emerge as the network
relaxes18 (Fig. 2B); the bump can then stably track the animal’s current position by responding to changes in
external input as it moves around the environment.

2.3 Phaser cells and oscillatory phase synchronization

In addition to spatial modulation, the neuronal activity of the hippocampus and other spatial circuits is rhyth-
mically modulated in time according to a continuous electric-field oscillation in the 5–12 Hz band called theta.5

Place cells exhibit a striking unidirectional shift, from late to early in the theta cycle, of spike theta-phase as
a rat crosses the place field.20 This ‘phase precession’ phenomenon is clearest on linear tracks, on which place
fields arrange in an unambiguous sequential order; indeed, spike phase contributes additional spatial informa-
tion (beyond firing rate alone) that allows more precise decoding of the rat’s location from neural recordings.21

However, in open two-dimensional environments, the relationship between the animal’s position and the theta
phase of hippocampal neurons has remained unclear.



Figure 2. Place cells and phaser cells exemplify two neural dynamics of spatial computation. (A) Place cells were recorded
on a 76-cm circular track as rats ran laps in the clockwise direction. A single place cell (top) that did not initially have a
strong place field (left, circular firing-rate map; center text, maximum rate in spikes per s) eventually formed a place field
(red, spikes) on laps 3 through 5 following activity during a visually attentive behavior (blue, spikes during a lateral head
scan movement) that persisted throughout the recording (right, rate map for remainder of recording). (bottom) Place cells
collectively map out the environment by forming fields at different locations. Adapted from Monaco et al. (2014) [15].
(B) A prominent theory to explain the spatial stability of place cell responses is the self-organization of attractor maps, in
which the environment is represented by a continuum of locations in which overlapping place fields create self-reinforcing
activity patterns in the recurrent network of the hippocampus. Adapted from Zhang (1996) [18]. (C) Phaser cells were
found in the lateral septum, a subcortical brain area that receives dense input from the hippocampus. These cells convey
spatial information in the timing of their spikes relative to the shared septal-hippocampal theta oscillation. (D) A simple
model of rhythmic inhibition (sinusoid) and slowly-varying external input (triangle wave) accounts for the strong coupling
of firing rate and theta phase observed in phaser cells. Adapted (C and D) from Monaco et al. (2019) [19].

To investigate this issue, we recently analyzed recordings from various subcortical brain areas connected to the
hippocampus and discovered neurons, which we termed ‘phaser cells,’ that have a clear and unambiguous theta-
phase code for spatial position in open environments.19 Phaser cells, which we found in the lateral septum, trade
off positional precision for allocentric reliability; that is, instead of the unidirectional shift of hippocampal phase
precession, phaser cells shift the phase of spiking in either direction according to the strength of external input at
any given location in space. The signature of this symmetric phase modulation is that maps of average firing rate
and average theta phase are highly correlated across space (see Fig. 2C for example phaser cell recordings showing
the rate (top row) and phase (bottom row) maps of the 80-cm diameter recording arena). This strong rate-phase
coupling can be accounted for with a simple model of excitatory external input interacting with inhibitory theta-
rhythmic input (Fig. 2D). We took advantage of that mechanistic simplicity to demonstrate through simulations
of oscillator networks that the diverse spatial patterns of phaser cells (Fig. 2C) may constitute an efficient basis
set for creating arbitary spatial patterns of phase synchrony.19

Location-dependent synchrony could serve various possible functions. A main component of spatial naviga-
tion, including in artificial autonomous systems, is path integration, which refers to updating internal estimates
of position based on self motion. Based on the discovery of grid cells in the rodent brain,22 a theory was de-
veloped in which the relative phase amongst a set of velocity-controlled oscillators (VCOs) computes a path
integration vector from a known reference point.23,24 It is unclear whether mammalian navigation utilizes the
VCO (or any other) oscillatory mechanism,25 but spatial synchrony driven by phaser cells could provide exactly
the spatial phase-code feedback signal needed to counteract the accumulation of path integration errors over
time.19,26,27 Regardless of experimental corroboration in the brain, in the consideration of engineered systems



these models from theoretical neuroscience can point to useful approaches. Certain properties of oscillatory
phase-based mechanisms may benefit the communication design28–30 of large-scale autonomous systems: (1) the
shared baseline oscillation may emerge dynamically via weakly-coupled rhythmic interactions; (2) oscillatory
signals are necessarily repeated and thus robust to noise and communication failures; (3) population phase codes
may synchronize within traveling waves that connect the disparate ends of a distributed system; (4) energy effi-
ciency derives from the basis of pulsatile timing signals instead of rate, intensity, or amplitude modulation; (5)
decentralized communication may arise from local phase organization that drives emergent higher-order states
that reciprocally inform local behaviors.

3. THE BRAIN/SWARM ANALOGY

Swarms and the concept of ‘swarm intelligence’ have been analogized to the complex collective behaviors of
groups of animals.31 Agent-local rule-based systems based on herding, flocking, and schooling have demonstrated
complex emergent patterns in computer simulations and multi-vehicle platforms.32,33 However, these group-
based behaviors typically reflect aggregative milling or dispersive responses in reaction to environmental changes.
Achieving an active adaptiveness and resilience in numerically large multi-agent systems will require dynamics
beyond close-to-equilibrium relaxation and reaction. Thus, we suggest that analogizing swarming behavior to
the neural dynamics of a single intelligent animal’s brain (Fig. 3) may provide a path toward active, goal-directed
spatial cognition in artificial swarms.

Figure 3. A swarming multi-agent group depicted as a neural network. (bottom) In-range peer-to-peer communication
establishes a connection like the reciprocal synapses between two neurons. The connection graph can be considered as a
weight matrix and reciprocal communication in local clusters of agents as the reverberating activity within a recurrent
network. (middle) Instead of place fields (or phaser cell responses), agents construct an internal ‘task field’ representing
preferences for certain environmental features or elements of the spatial task based on external inputs and each agent’s
internal state, which may be represented as a phase variable. Images adapted for purposes of illustration from Ivancevic
& Reid (2016) [34]. (top) Collective communication between agents could then drive processes of synchronization and
self-organization as observed at the population level in neural circuits.

Targeting agent mobility to the level of a single neuron (Fig. 3) permits a distributed and decentralized
paradigm of swarm control. The functional analogy between swarming and vertebrate neural architectures was
discussed over a decade ago in the context of collective behaviors in animals, including honey bees35 and ants,36

but its impact across research disciplines has been unclear. By extending the notion of neural swarming to
autonomous technologies, the neuroscientific principles of spatial cognition,3 decision making,37,38 and plan-
ning5,39,40 can be leveraged to provide the higher-order dynamics that allow individual animals to explore and
exploit the real world. To satisfy the analogy, one crucial addition is required. As described above, neural
communication is based on the propagation of spikes between neurons. Biophysically realistic spike generation
may be formalized within phase models [e.g., 41], thus we posit that the internal state of neural swarming agents
should be a phase variable (or collection of phase variables on a manifold).



4. NEURAL SWARM CONTROL

4.1 Swarming with mobile oscillators

The addition of an internal phase state to each agent implies that they may be understood as oscillators. Recently,
O’Keeffe, Hong, & Strogatz (2017) [42] presented an expressive generalization of a class of biological systems
that behave as populations of mobile oscillators whose phase state θ is coupled to spatial dynamics ẋ, e.g.,

ẋi =
1

N

 N∑
j /∈i

xj − xi

|xj − xi|
(A+ J cos(θj − θi))−B

xj − xi

|xj − xi|2

 , (3)

for scaling parameters A and B, and phase coupling J , and undergoes local phase synchronization, e.g.,

θ̇i = ωi +
K

N

N∑
j /∈i

sin (θj − θi)
|xj − xi|

, (4)

for baseline frequency ω and synchronization parameter K. O’Keeffe et al. [42] demonstrated three static and
two dynamic (or ‘active’) equilibria depending on coupling J and synchronization K. In the static states, the
oscillator units spread outwards as the dynamics relax and converge on a regular hexagonal tiling of the unit disc
(for A = B = 1) or an annulus that is angularly sorted according to phase (i.e., a ‘phase wave’). These states
represent minimum-energy solutions given the mutual forces of attraction and repulsion, respectively governed by
A and B in Eq. (3). The active states, however, frustrate the spatial and phase dynamics by pairing phase-tuned
attraction with local desynchronization (e.g., J ∼ 1 and K � 0) and produce constant milling or patrolling
behaviors. Thus, this phase-based swarming formalism, termed ‘swarmalators,’ is a potentially useful framework
for constructing more complex, higher-order dynamics.

4.2 Internal place fields for neural control

Beyond the addition of phase state, neural control for swarming agents must decouple the agent’s physical
location from internal self-localization for two reasons. First, the multiplicity of agents is a qualitative difference
between swarms and neural circuits; every hippocampal neuron corresponds to a single agent (e.g., the rat)
and has particular connections and weights to other neurons with intrinsic recurrent and/or external sensory
inputs.43 That is, the individual rat has many place fields but the individual swarm agent should have only one,
which cannot be identical to the agent’s objective location which depends on the complexities of a physical entity
operating in the external world. Second, a recent line of experimental results have compellingly demonstrated that
spatial path planning in hippocampal networks relies on activating sequences of remote locations represented
by place cells.39,44,45 That is, dynamic replanning in mammalian spatial cognition may depend on internal
representations that are separable from the animal’s (or agent’s) current objective position.

The notion of the internal place field (or phaser cell response) raises the question of its relationship to the agent
and the agent’s motion dynamics. A straightforward approach might be to operate the swarming interaction
(e.g., Eqs. (3) and (4)) on the internal position while the physical agent tracks the vector difference between
its physical and internal positions in order to continuously approach the internal position. This method allows
simulations to apply physics, energy constraints, or low-level controls (e.g., geometry-based obstacle avoidance)
to each agent entity independently of the internal dynamics of the swarm. Given the distance-weight relationship
described for attractor map connectivity in Eq. (2), this separation crucially provides a degree-of-freedom that
may allow swarming to be recast as learning.

4.3 Neural swarming as mobile Hebbian learning

Inspection of the swarmalator dynamics in Eqs. (3) and (4) reveals a formal similarity to learning rules based on
Hebbian associative synaptic modification.46–48 Hebbian learning in neural network models typically increments
or decrements a synaptic weight according to a learning rate and a measure of the activity correlation between
the pre-synaptic (input) and the post-synaptic (output) neurons. In this case, the phase coupling J acts as
a learning rate and the cosine phase similarity provides the input/output correlation. Positive values of this



Hebbian-like measurement multiply the approaching unit vectors to bring the oscillator units closer together. To
take this further, following the exponential attractor map kernel from Eq. (2), we could explicitly relate synaptic
weight and agent distance, Wij = exp(−Dij/α), for inter-agent distances D and spatial constant α. At this
point, various approaches to updating the weight matrix W are possible.

We could consider that each agent’s internal place field results from the triangulation of environmental cues.
Modeling the field as a σ-bandwidth Gaussian function, we could define a time-continuous cue input

τ ċi = exp

− 1

2σ2

∑
V ci

|Dc
i − Dc∗

i |

2
− ci , (5)

from the cues V c
i that are currently visible to unit i, which is distance Dc

i from the cue and whose internal place
field center is distance Dc∗

i from the cue. Similarly, recurrent input from peers in the swarm could follow

τ q̇ij = Vijω
h
j − qij , (6)

where V ∈ {0, 1}N×N provides inter-agent visibility and ωh is neural activation expressed in units of the baseline
angular frequency ω of the phase state. With these feedforward (c, cue) and recurrent (q, swarm) inputs, we
could define total ‘conductances’ to the neuron (agent) as

Ic = gcc Is = gs

N∑
j=1

W·j ◦ q·j , (7)

where gc and gs indicate maximum conductance values and ◦ is the entrywise vector product. Similar to a model
neuron, these inputs could drive a nonlinear activation function, e.g.,

ωh = k tanh

[
1

k
(Ic + Is)

]
, (8)

where k sets the maximum activation relative to the baseline frequency. Thus, replacing Eq. (4), phase syn-
chronization in this neural variation of the swarmalator formalism is expressed through the phase evolution
θ̇ = 2π(1 + ωh) ◦ ω. To construct a Hebbian updating rule, we lastly require a time-continuous post-synaptic
signal, e.g., τ ṗ = ωh − p. A näıve rule, such as dW = ηq>[p, . . . ,p], would have weights grow unbounded; this
causes pathological states in neural networks, and would cause a swarm to collapse into a singularity. Instead,
if we assume that the sum of pre-synaptic weights is normalized to unity after each update, then the updated
weights may follow

W ′ = W + η (q −W [p, . . . ,p])
>

[p, . . . ,p] , (9)

with learning rate η, according to Oja’s derivation.49 The effect of normalization on Hebbian learning in Eq. (9)
is the addition of a subtractive term, quadratic in the post-synaptic signal p, that depresses the growth of overly
active synapses. In network models of place cell learning, such synaptic depression is critical to spreading out
place fields to efficiently map an environment.50,51 Strikingly, this synaptic depression is functionally analogous
to the quadratic repulsion term governed by the parameter B in Eq. (3); thus, a minimal form of stable Hebbian
learning recapitulates generalized swarming dynamics.

To fully integrate neural network learning with swarming, the updated weights W ′ must drive agent move-
ments. Given the exponential kernel that produced the baseline weight matrix W , we can convert the updated
weights into the desired distance between agents i and j,

D′ij = −α logW ′ij , (10)

and perform a unit-wise averaging of the implied position shifts between mutually visible pairs of agents, e.g.,

dxi =
1

2
∑

j Vij

N∑
j=1

Vij (D′ij −Dij)
xj − xi

|xj − xi|
, (11)

to compute the effective motion resulting from modified synaptic weights. The foregoing description illustrates
one possible reformulation of phase-organized swarming as a dynamical neural network problem.



5. SUMMARY & DISCUSSION

We introduced the idea that neurobiological solutions in foraging animals may contribute to the development of
many-vehicle autonomous technologies. We outlined a critical problem for artificial swarms (Fig. 1), which will
require novel control schemes as robotic vehicles are scaled down (decreasing agent resources) and the numerical
size of swarms is scaled up (increasing communication and coordination requirements). A similar distributed
scaling problem may have been solved by the neural architecture of mammalian brains. Particularly, the neural
circuits of the hippocampus and related brain areas support spatial cognition, decision making, and planning
through all of the complex external conditions that, e.g., a rat will encounter throughout its life.

Neuronal networks such as hippocampal place cells and lateral septal phaser cells have produced theo-
ries of brain function derived from two main concepts: (1) that sparse, recurrent connectivity can produce
attractor maps with self-organized, self-stabilizing activity patterns that reflect spatial learning and experi-
ence (Fig. 2A+B); (2) that phase coding based on shared oscillations can temporally organize spatial information
as emergent global states (Fig. 2C+D). Oscillatory and attractor dynamics both derive from synaptic connections
between neurons and the spikes that propagate across those connections. Rethinking swarm communication as
spike propagation may reduce the density and complexity of peer-to-peer data messaging commensurate with
the reduced communication capabilities of small-scale vehicles.

Compared to signal comprehension, signal production errors may be particularly deleterious to large-scale
distributed inference and consensus.52 Thus, potential onboard suites for ‘cognitive swarming’ platforms should
emphasize reliable, real-time transmission of pulsatile low-bandwidth (even single bit) packets. Low fidelity
inputs from, e.g., cameras or receivers are more easily compensated by distributed processing within the swarm;
i.e., sensor designs should emphasize energy and cost to maximize deployment duration and swarm size.

We made the explicit analogy from swarms and agents to neural circuits and neurons. This analogy allows
the tools of theoretical neuroscience to be leveraged in developing artificial autonomous systems. We suggested
two components that facilitate the implementation of the neural swarming analogy: (1) a phase-based internal
state; (2) decoupling of the agent’s physical location from its internal self-localization. The phase state naturally
drives spike generation and leverages the expressive complexity of mobile oscillator formalisms such as swarmala-
tors (Eqs. (3) and (4)). The separation of physical/internal self-localization allows swarm motion dynamics to
be interpreted as Hebbian-like learning in a place cell network. On this basis, emergent hippocampal phenomena
such as oscillatory phase coding and attractor bump formation provide a framework for advances in decentralized
swarm control for tasks that may require dynamic replanning within complex and changing environments.
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