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• Efficient (force + particles) cause is not the only kind of cause


• Aristotelian ‘in-formed’ types


• Persistent unity-of-type in complex, evolvable systems


• History of physics


• Helmholtz, Bayesian inference, Bayesian brain hypothesis, the 
free-energy principle, and active inference


• Embodied cognition


• Autopoiesis implies ergodic system trajectories


• Predictive processing framework implies autopoietic homeostasis

Emergence of control
Moving beyond classical thermodynamical conceptions 
of energy transfer and cause–effect relations



Progressive informational/entropic articulation 
vs. forward models

Embodied cognition

Embodiment-first theories invert 
our view of cognition as integrating 
isolated channels of sensory 
information into unified internal 
models, to one of articulating 
dynamical boundaries within 
existing global states that already 
reflect an organism’s cumulative 
experience in its world (umvelt).

Monaco and Hwang. (2022). Cognitive Computation



Inverting the input-output paradigm

1. Computational metaphors for the brain 
have entrenched the behaviorist bias 
that externally observable output is the 
endpoint of brain function


2. Neuroscience and AI have both 
embraced this bias, with either explicit 
or implicit input and output layers for 
computations


3. Implied control paradigm is one of 
building and evaluating forward 
(predictive/comparator) models

External observer bias

Image Credit: Glazer et al. (PEGASOS) 
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Livet J, et al. (2007) Nature, 450, 56
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Hippocampus

Lateral Entorhinal  
Cortex (LEC)

Medial Entorhinal  
Cortex (MEC)

Boccara CN, et al. (2015). Hippocampus, 25: 83814



Video Credit: R. GrievesNot Actual Speed
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• Predictive processing suggests that 
feedback-driven generative models require 
active inference: actions that maximize 
model evidence by balancing internal 
active-state (self) entropy with external 
sensory-state (nonself) entropy.


• Autonomous agents learn massively 
distributed internal feedback models by 
adaptively balancing entropy/negentropy 
accumulation in information streams 
arising at the self–nonself boundary.

Active Inference

Friston K. Hierarchical models in the brain. PLOS Comput Biol. 2008;4: e1000211 
Friston K. What is optimal about motor control? Neuron. 2011;72:488–98.

The generative–variational role of sensory predictions



5x Speed Video Credit: G. Rao



Active inference — Head scanning and place fields

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



Location of scan firing

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725

Active inference — Head scanning and place fields



Cognitive map-building driven by autonomous head-scan sampling

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725

Active inference — Head scanning and place fields



Perceptual control internalizes input, output, and goals (purposiveness)

• Goal-setting autonomy recognizes the agency 
inherent in embodied living systems


• Animals have goals and those goals govern 
their behavior


• Environmental control is established through 
internal perceptual control of corresponding 
sensory perceptions constructed by perceptual 
input functions

Reorganizing the control flow

Mansell (ed.). (2020). International Handbook of Perceptual Control Theory



Reorganizing the control flow
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FIG. 2.1 Diagram of a negative feedback control system.21

Mansell (ed.). (2020). International Handbook of Perceptual Control Theory

Perceptual control internalizes input, output, and goals (purposiveness)



Reorganizing the control flow

Mansell (ed.). (2020). International Handbook of Perceptual Control Theory

• Behavior is no longer the output of the 
neural system


• Outputs (Y0) are cascading internal 
reference signals


• The lowest control levels form the 
self–nonself boundary that interacts 
with the environment


• Internal perceptions of controlled 
environmental variables are controlled, 
not behavior

Perceptual control internalizes input, output, and goals (purposiveness)



Reorganizing the control flow

Tomaselli. The Evolution of Agency

Perceptual control internalizes input, output, and goals (purposiveness)



Trace image: Hafting T, et al. (2008). Nature, 453: 1248
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Cyclic rebuilding of internal context → entropy management?
‘Theta flickering’ of hippocampal maps 

Jezek, et al. (2011). NatureAnderson. (2014) After Phrenology



Neural dynamics emerge from interdependent ionic gates

Izhikevich (2007) Dynamical Systems in Neuroscience. MIT Press



How to Make a (Neuronal) Oscillator

Izhikevich (2007) Dynamical Systems in Neuroscience. MIT Press



Freeman (2000) How Brains Make Up Their Minds. Columbia University Press

How to Make a (Neuronal) Oscillator



Freeman (2000) How Brains Make Up Their Minds. Columbia University PressIzhikevich (2007) Dynamical Systems in Neuroscience. MIT Press

How to Make a (Neuronal) Oscillator



Communication Through Coherence (Fries, 2005)

P. Fries. (2005) A mechanism for cognitive dynamics: neuronal communication 
through neuronal coherence. TICS, 9, 474.



Predictive processing hierarchy and the “spectral connectome”

Bastos, …, Friston. (2012) Canonical Microcircuits for Predictive Coding. Neuron, 76, 695.



(2) Temporal dynamics:

(3) Agentic interaction:

Integrative framework for neurodynamical cognition
(1) Network structure:

Monaco and Hwang. (2022). Cognitive Computation



(2) Temporal dynamics:

(3) Agentic interaction:

• Example: Nested oscillations with 
phase-amplitude coupling between 
levels of the pseudohierarchy

(1) Network structure:

Integrative framework for neurodynamical cognition

Monaco and Hwang. (2022). Cognitive Computation



(1) Network structure:

(2) Temporal dynamics:

(3) Agentic interaction:
• Example: Attentive head-scanning 

behavior (Monaco et al., 2014)

Integrative framework for neurodynamical cognition

Monaco and Hwang. (2022). Cognitive Computation



(1) Structural heterarchy (2) Oscillatory coupling (3) Agentic interaction

Neurodynamical computing: Variation, selection, action

37

What kinds of models can advance this framework for 
emergent autonomy in complex systems?

Monaco and Hwang. (2022). Cognitive Computation



• Local oscillations and neuronal synchrony 

• Temporal coding with oscillatory phase


• O’Keefe & Recce (1993) — Theta-phase 
precession of hippocampal place-field firing

Knierim & Zhang (2012)

• Emergent self-organizing states arising from 
recurrence and feedback in structured networks 

• Hopfield networks (1982) — Pattern completion 
supports content-addressable memory with 
(limited) generalization


• Memory retrieval as a state-space trajectory 
that probes basins of attraction

Hedrick & Zhang (2016)

Hafting et al. (2008)

Temporal and Population Dynamics
Key Building Blocks

Monaco and Hwang. (2022). Cognitive Computation



• Local oscillations and neuronal synchrony 

• Temporal coding with oscillatory phase


• O’Keefe & Recce (1993) — Theta-phase 
precession of hippocampal place-field firing

• Emergent self-organizing states arising from 
recurrence and feedback in structured networks 

• Hopfield networks (1982) — Pattern completion 
supports content-addressable memory with 
(limited) generalization


• Memory retrieval as a state-space trajectory 
that probes basins of attraction

Temporal and population Dynamics
Key Building Blocks

Monaco and Hwang. (2022). Cognitive Computation



A murmuration of starlings



(1) Structural heterarchy (2) Dynamical selection (3) Agential interaction

Inherit from 
spatial geometry

Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics. doi: 10.1007/s00422-020-00823-z 

Spatial phase coding with 
interagent coupling

Phase-Coupling Term

Visible cue input and 
reward approach

NeuroSwarms: Control by Phase-Organized Attractors

41

https://doi.org/10.1007/s00422-020-00823-z


Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 

Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics

Distance kernels to create 
synaptic weights

42

A Gaussian kernel for 
distance constructs a 
spatial attractor map 

in the connections

Knierim & Zhang (2012)
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Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 

Phase-Coupling Term

43 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics43



Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 
Neural Activation

44 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics

Total Recurrent Swarming Input

Phase-Coupling Term

Cues, IcRewards, Ir

Example Maze  
Environment
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Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 

45 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics

Hebbian 
Learning via 
Oja’s Rule

‘Presynaptic’ 
Activity

‘Postsynaptic’ 
Activation

45



Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 

Inverted  distance kernels to 
calculate motion

46 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics46



Cognitive Swarming: 
With Attractor Learning 

but Without Phase 
Coupling

Monaco, Hwang, Schultz, & Zhang 
(2020) Biological Cybernetics



Monaco, Hwang, Schultz, & Zhang 
(2020) Biological Cybernetics

Cognitive Swarming: 
With Phase Coupling 
and Identical Phase 

Initialization



Monaco, Hwang, Schultz, & Zhang 
(2020) Biological Cybernetics

Cognitive Swarming: 
With Phase Coupling 

and Random Phase 
Initialization



Monaco, Hwang, Schultz, & Zhang 
(2020) Biological Cybernetics

Cognitive Swarming: 
With Phase Coupling, 
Balanced Swarming 

and Reward Learning, 
and Multiple Rewards 

in a Complex and 
Irregular Maze



Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics. doi: 10.1007/s00422-020-00823-z 51

Single-Agent Swarm: 
Virtual Particle Swarm 
Guides a Single Agent 

(Green Circle) to 
Capture Multiple 

Rewards in an  
Irregular  Maze

https://doi.org/10.1007/s00422-020-00823-z


Single-Agent Learning-as-Swarming: Double-T Maze

Monaco, Hwang, Schultz, & Zhang. (2020). Biological Cybernetics, 114: 269



There are many…
Theories of consciousness

Seth. (2022). Theories of consciousness. NRN



• The BIG questions…


• What is intelligence and what is it for?


• What is consciousness and what is it for?


• These are real questions, but are they hard?

Intelligence vs. conscious experience
Interoceptor theory of consciousness and 
narrative dynamics across the lifespan



Mental images must be grounded in (primordial) feeling
What is sufficient for conscious states?

Damasio. Self Comes to Mind; Feeling & Knowing

• An organism manages three sensoriums


• Exteroception


• Proprioception


• Interoception


• All peripheral sensory activations construct 
neural patterns that pass through cortical 
and subcortical maps that impose a shared 
regimented order and structure


• Neural patterns → mental “images”


• Fingerprint of “ownership” and origin of 
self-perspective



Direct visceral access to neural systems
Conserved affective-emotive construction

Striedter & Northcutt. Brains Through Time

• The visceral and peripheral milieu of 
bodies has direct access to 
peripheral ascending nerves


• Unmyelinated, unlike exteroceptive 
and proprioceptive systems


• Less precision, but direct and 
deeply integrated access



Direct visceral access to neural systems
Conserved affective-emotive construction

Striedter & Northcutt. Brains Through Time



Direct visceral access to neural systems
Conserved affective-emotive construction

Striedter & Northcutt. Brains Through Time

• Interoceptive signals converge onto a small 
set of highly conserved brainstem nuclei


• Parabrachial nucleus


• Periaqueductal gray (PAG)


• Nucleus of the tractus solitarius



Exteroceptive (body-in-world) and proprioceptive (brain-in-body) reference frames 
Mental image-making and mapping cortices

Striedter & Northcutt. Brains Through Time

• The “image-making” cortices are also 
highly conserved within mammalia, 
reflecting ~200 million years of selection



Affective-interoceptive origin of 
consciousness

You have to care to be a “you”, 
and you have to feel to care

“We would not only need a model 
of the brain functioning underlying 
coupled coping such as Freeman’s, 
but we would also need—and 
here’s the rub—a model of our 
particular way of being embedded 
and embodied such that what we 
experience is significant for us in 
the particular way that it is.”

Dreyfus. (2007). Why Heideggerian AI failed…

Patrick Stewart as Macbeth




