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Emergence of control

Moving beyond classical thermodynamical conceptions
of energy transfer and cause—effect relations

» Efficient (force + particles) cause is not the only kind of cause
* Aristotelian ‘in-formed’ types
* Persistent unity-of-type in complex, evolvable systems

* History of physics

 Helmholtz, Bayesian inference, Bayesian brain hypothesis, the
free-energy principle, and active inference

 Embodied cognition
* Autopolesis implies ergodic system trajectories

* Predictive processing framework implies autopoietic homeostasis
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Embodied cognition

Progressive informational/entropic articulation
vs. forward models

Embodiment-first theories invert
our view of cognition as integrating
Isolated channels of sensory
iInformation into unified internal
models, to one of articulating
dynamical boundaries within
existing global states that already
reflect an organism’s cumulative
experience in its world (umvelt).

Monaco and Hwang. (2022). Cognitive Computation



External observer bias

Inverting the input-output paradigm

1. Computational metaphors for the brain
have entrenched the behaviorist bias
that externally observable output is the
endpoint of brain function

2. Neuroscience and Al have both
embraced this bias, with either explicit
or implicit input and output layers for
computations

3. Implied control paradigm is one of
building and evaluating forward
predictive/comparator) models

Image Credit: Glazer et al.
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Credit: GENSAT Project, http://www.gensat.org/imagenavigator.sp!imagelD=60455



Hippocampus

Livet J, et al. (2007) Nature, 450, 56
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Active Inference

The generative—variational role of sensory predictions

* Predictive processing suggests that
feedback-driven generative models require
active inference: actions that maximize
model evidence by balancing internal
active-state (self) entropy with external
sensory-state (nonself) entropy.

 Autonomous agents learn massively
distributed internal feedback models by
adaptively balancing entropy/negentropy
accumulation in information streams
arising at the self-nonself boundary.

Friston K. Hierarchical models in the brain. PLOS Comput Biol. 2008;4: 1000211
Friston K. What is optimal about motor control? Neuron. 2011;72:488-98.



Video Credit: G. Rao



Active inference — Head scanning and place fields

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



Active inference — Head scanning and place fields

09.1 s

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



Active inference — Head scanning and place fields

Cognitive map-building driven by autonomous head-scan sampling

First detected spikes of a new place field forming
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Track position from beginning of recording in novel room (laps)

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



Reorganizing the control flow

Perceptual control internalizes input, output, and goals (purposiveness)

» (Goal-setting autonomy recognizes the agency
iInherent In embodied living systems

 Animals have goals and those goals govern
their behavior

* Environmental control is established through
internal perceptual control of corresponding
sensory perceptions constructed by perceptual
input functions

Mansell (ed.). (2020). International Handbook of Perceptual Control Theory



Reorganizing the control flow

Perceptual control internalizes input, output, and goals (purposiveness)
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FIG. 2.1 Diagram of a negative feedback control system.”’

FIG. 2.2 PCT model of a control system; control theory for psychologists.

Mansell (ed.). (2020). International Handbook of Perceptual Control Theory



Reorganizing the control flow

Perceptual control internalizes input, output, and goals (purposiveness)

 Behavior is no longer the output of the  -—-----eo o
neural system

e Qutputs (Yo) are cascading internal
reference signals

e The lowest control levels form the
self-nonself boundary that interacts
with the environment

P(t) o , Controlled
| YO | variable

d(t)

* |nternal perceptions of controlled
environmental variables are controlled,
not behavior

FIG. 2.2 PCT model of a control system; control theory for psychologists.

Mansell (ed.). (2020). International Handbook of Perceptual Control Theory



Reorganizing the control flow

Perceptual control internalizes input, output, and goals (purposiveness)

Stomach Eyes
G: 1D ant
Goal: —_ \ P: goal .y_es’
satiety A match? A
l full? E A: locate ant :
Stop no: :
keep looking !

Limbs

G: be at ant

P: goal
match?

A: go to ant

keep going :

yes

Mouth

G: capture + eat ant

AN

P: goal
match?

Y

A: strike and eat

no: :
keep trying !

Figure 3.3

Highly simplified sequence of feedback control systems comprising a lizard’s forag-
ing for an ant efficiently and flexibly. G = goal; A = action; P = perception (to see if
actual situation matches goal situation). Each box actually represents a hierarchy of
submechanisms (e.g., moving limbs to locomote, opening mouth to eat, etc.).

Tomaselli. The Evolution of Agency




The Hippocampal Theta Rhythm
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‘Theta flickering’ of hippocampal maps

Cyclic rebuilding of internal context & entropy management?
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Neural dynamics emerge from interdependent ionic gates
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How to Make a (Neuronal) Oscillator

currents
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How to Make a (Neuronal) Oscillator
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Freeman (2000) How Brains Make Up Their Minds. Columbia University Pres:s



How to Make a (Neuronal) Oscillator
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Communication Through Coherence (Fries, 2005)

(a) (b) (c)
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Figure 5. Coherence and competition. (a) Stimulus configuration used in a selective visual attention experiment [22]. The lower patch of grating falls into the receptive field of
a neuronal group in V4 indicated in red (and black for the upper patch). Both grating patches fall into the receptive field of a neuronal group in IT cortex (green). The purple
‘spotlight” indicates that spatial selective attention is directed to the grating patch contained in the red receptive field. (b) Although the firing rates of the attended V4 neurons
are only slightly enhanced, they show a strong enhancement of gamma-band coherence. (Data from [22]; new analysis of spike-field coherence, z-transformed and pooled
across pairs of recording sites). (c) The different neuronal groups in V4 and IT that are activated by the stimuli shown in (a). Experimental evidence suggests that the attended
V4 neurons communicate effectively with the IT neurons but the unattended V4 neurons fail to do so. This is indicated with pointed and blunt arrowheads, respectively. This
might be the result of modulatory input from parietal cortex that gives a competitive bias towards the attended V4 neurons.

www.sciencedirect.com

P. Fries. (2005) A mechanism for cognitive dynamics: neuronal communication
through neuronal coherence. TICS, 9, 474.



Predictive processing hierarchy and the “spectral connectome”

Higher cortical areas

Spectral asymmetries in superficial and deep cells
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Bastos, ..., Friston. (2012) Canonical Microcircuits for Predictive Coding. Neuron, 76, 695.



Integrative framework for neurodynamical cognition

(1) Network structure: Sparse, distributed hierarchies are non-strict

@ Generalists
@ Intermediate
© Specialists

@—> Bidirectional hierarchical connectivity
Possible connections that violate strict hierarchy

Monaco and Hwang. (2022). Cognitive Computation



Integrative framework for neurodynamical cognition

Readers phase-shift to select inputs and establish communication channels

W
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(2) Temporal dynamics:

« Example: Nested oscillations with
phase-amplitude coupling between

levels of the pseudohierarchy / \
. Phase-organized flexibility /

1L <P / A

Channel 1 Channel 2

Monaco and Hwang. (2022). Cognitive Computation



Place cells

(3) Agentic interaction:

Example: Attentive head-scanning
behavior (Monaco et al., 2014)

Field
(Before)

t8c2
t8c4d
t2c7
t4c
t2c6

Head-scan spiking activity (lap 6, blue)
followed by place-field onset (lap 7, red

Significant, unexpected head-scan spiking
First detected spikes of a new place field forming

Integrative framework for neurodynamical cognition

{8 I 1N N M AN W )
AR |
| $ I |

I!II LI |I = —r— =i

|
IE:

HEH

Monaco and Hwang. (2022). Cognitive Computation

2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20
Track position from beginning of recording in novel room (laps)
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Neurodynamical computing: Variation, selection, action

(1) Structural heterarchy (2) Oscillatory coupling (3) Agentic interaction

What kinds of models can advance this framework for
emergent autonomy in complex systems?

Monaco and Hwang. (2022). Cognitive Computation



Temporal and Population Dynamics
Key Building Blocks

720 I
e |Local oscillations and neuronal synchrony I
9 IR
e Temporal coding with oscillatory phase g“ao' ;o F
o (O’Keefe & Recce (1993) — Theta-phase § 240} 1 v '
precession of hippocampal place-field firing ~ g R
D—- f:t::.;' ! . ! @l
0 150 200 250 300
Position (cm)
e Emergent self-organizing states arising from
recurrence and feedback in structured networks
e Hopfield networks (1982) — Pattern completion 2
supports content-addressable memory with -
(limited) generalization i

e Memory retrieval as a state-space trajectory
that probes basins of attraction

Monaco and Hwang. (2022). Cognitive Computation



Temporal and population Dynamics
Key Building Blocks

e |Local oscillations and neuronal synchrony
e Temporal coding with oscillatory phase

o (O’Keefe & Recce (1993) — Theta-phase
precession of hippocampal place-field firing

e Emergent self-organizing states arising from
recurrence and feedback in structured networks

e Hopfield networks (1982) — Pattern completion
supports content-addressable memory with
(limited) generalization

e Memory retrieval as a state-space trajectory
that probes basins of attraction

Cell assemblies, synaptic traces, and reentrant loops

@=——=Pp Synaptic flow within cell assemblies
O=———==p Reentrant branch that may activate distinct readers

@——Pp Ascending synaptic trace for consolidation
- = = = P Hub connection allowing two tokens to compose

Monaco and Hwang. (2022). Cognitive Computation
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NeuroSwarms: Control by Phase-Organized Attractors

(1) Structural heterarchy (2) Dynamical selection (3) Agential interaction

d Multi-Reward

Tq(iz'j — Vij 005(93' — 91) — (i

Phase-Coupling Term

Inherit from Spatial phase coding with Visible cue input and
spatial geometry interagent coupling reward approach

Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics. doi: 10.1007/s00422-020-00823-7



https://doi.org/10.1007/s00422-020-00823-z

Multi-Agent Swarming as Learning & Memory

Wi; = Vij exp(—=Dj; /o®)] (3)

A Gaussian kernel for
Distance kernels to create distance constructs a
synaptic weights spatial attractor map

In the connections

it = Vip exp(— ;k/ﬁ")a

Knierim & Zhang (2012)

42 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics
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Multi-Agent Swarming as Learning & Memory

TqQij = Vij 005(93‘ —0;) — qij (7)
Phase-Coupling Term

43 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics
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Multi-Agent Swarming as Learning & Memory

Total Recurrent Swarming Input

p:[IC_I_I’I“_I_Iq]_I_a

9:w0+w1p,

TqQij = sz 008(93‘ — 91) — {ij
Phase-Coupling Term

a4 Example Maze
Environment

e -

Rewards, IrZCues, IC"

pXe

—

44 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics
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Multi-Agent Swarming as Learning & Memory

Wi/j = Wi + At nVi; pi(%’j — piWij) ) (13)
X
‘Pbsynaptic, Hebbian
Activity Learning via
/ Oja’s Rule
T/ T T / T
ik = Wi + At Vi pi(rie — piWix) - (14)

45

Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics
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Multi-Agent Swarming as Learning & Memory

— \/—202 log W, (15)
= —klog W', (16)

46 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics



Cognitive Swarming:
With Attractor Learning
but Without Phase

Coupling

Monaco, Hwang, Schultz, & Zhang
(2020) Biological Cybernetics



Cognitive Swarming:
With Phase Coupling
and Identical Phase
Initialization

Monaco, Hwang, Schultz, & Zhang
(2020) Biological Cybernetics



Cognitive Swarming:
With Phase Coupling
and Random Phase
Initialization

Monaco, Hwang, Schultz, & Zhang
(2020) Biological Cybernetics



Cognitive Swarming:
With Phase Coupling,
Balanced Swarming
and Reward Learning,
and Multiple Rewards
in a Complex and
Irregular Maze

Monaco, Hwang, Schultz, & Zhang
(2020) Biological Cybernetics
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Single-Agent Swarm:
Virtual Particle Swarm
Guides a Single Agent
(Green Circle) to
Capture Multiple
Rewards In an
Irregular Maze

O

F=0.010 s

Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics. doi: 10.1007/s00422-020-00823-7
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Single-Agent Learning-as-Swarming: Double-T Maze

IL.

{ =0.010 s
Monaco, Hwang, Schultz, & Zhang. (2020). Biological Cybernetics, 114: 269



Table 1 | A selection of theories of consciousness

Theory
Higher-order theory (HOT)

Self-organizing meta-
representational theory

Attended intermediate
representation theory

Clobal workspace theories

(GWTs)

Integrated information
theory (IIT)

Information closure theory
Dynamic core theory
Neural Darwinism

Local recurrency

Predictive processing

Neurc-representationalism
Active inference

Beast machine theory
Neural subjective frame
Self comes to mind theory

Attention schema theory

Primary claim
Consciousness depends on meta-representations of lower-order mental states

Consciousness is the brain’s [meta-representational) theory about itself

Consciousness depends on the attentional amplification of
intermediate-level representatinns

Consciousness depends on ignition and broadcast within a neuronal global
workspace where fronto-parietal cortical regions play a central, hub-like role

Consciousness is identical to the cause-effect structure of a physical
substrate that specifiess a maximum of irreducible integrated information

Consciousness depends on non-trivial infermation closure with respect
to an environment at particular coarse-greined scales

(Consciousness depends on a functional cluster of neural activity comhining
high levels of dynamical integration and differentiation

Consciousness depends on re-entrant interactions reflecting a history
of value-dependent learning events shaped by selectionist principles

Consciousness depends on local recurrent or re-entrant cortical processing
and promcteslearning

Perception depends on predictive inference of the causes of sensory signéls;
provides aframework for systematically mapping neural mechanisms to
aspects of comsciousness

Consciousness depends on multilevel neurally encoced predictive
representations

Although views vary, n one version consciousness depends on temporally
and counterfactually deep inference about self-generated actions

Consciousness is grounded in allostatic control-oriented predictive inference

Consciousness depends on neural maps of the bodily state providing
a first-person perspectiva

Consciousness depends on interactions between homeostatic routines
and multilevelinteroceptive maps. with affect and fezling at the core

Consciousness depends on a neurally encoded model of the control
of attention

Key refs

11,46

14,140

145,146

€7.73.19

o see
also™

Jhil see
also™

Theories of consciousness

There are many...

Multiple drafts model

Sensorimotor theory

Unlimited associative
learning

Dendritic integration
theory

Electromagnetic lield
theory

Orchestrated objective
reduction

Our selection of theories includes those that are eithar naurobiological in nature or potentially axpressible in neurobiological terms.

Consciousness depends on multiple (potentially inconsistent)
representations rather than a single, unified representation that is available

to acentral system

Consciousness depends on mastery of the laws governing sensorimotor

contingencies

Consciousness depends on a form of learningwhich enables an organism
to link motivational value with stimuli or actions that are novel, compounc

and non-reflexinducing

Consciousness depends on integration of top-down and bottom-up

signalling at a cellular level

Conscivusness is identical Lo physically integrated, and causally aclive,
information encoded in the brain’s global electromagnetic field

Consciousness depends on quantum computations within microtubules

inside neurons

Seth. (2022). Theories of consciousness. NRN

149

18



Intelligence vs. conscmus experleng..!} N
Interoceptor theory of consciousness and N SR T i
narrative dynamics across the lifespan - /.-:;“’I L0 Ry

* The BIG questions...
 What is intelligence and what is it for?

e What is consciousness and what is if for? -

 These are real questions, but are they hard?



What is sufficient for conscious states?

Mental images must be grounded in (primordial) feeling

* An organism manages three sensoriums e - e | Mt e
S A Y T—' = ~ ‘. L ?.’:
* Exteroception ::. - {m o] on o 2
» Proprioception {f/ $
¢ Intercceptlon g}lr Ti\% é%’ bo%b 60D BOdb
 All peripheral sensory activations construct = N - =
neural patterns that pass through cortical E (o con - S
and subcortical maps that impose a shared oA oA G
regimented order and structure PN
i = = fc‘-?? E’?
* Neural patterns = mental “images” C 4 e

* Fingerprint of “ownership” and origin of
self-perspective

Damasio. Self Comes to Mind; Feeling & Knowing



Conserved affective-emotive construction

Direct visceral access to neural systems

AmphiOXllS

Myotomes Nerve #51

Myotomes
“\
 Unmyelinated, unlike exteroceptive

and proprioceptive systems —

Shark otic vesicle

* The visceral and peripheral milieu of
bodies has direct access to
peripheral ascending nerves

e | ess precision, but direct and
deeply integrated access

EEEEE Lateral line
0 Other sensory
[e%es] Ganglia

Striedter & Northcutt. Brains Through Time



Conserved affective-emotive construction

Direct visceral access to neural systems

* Evolutionarily ancient system

« Early fish (right) and amphibians (below)

Loc. coeruleus

Pallidum  1Dalamus
| Pretectum

Striatum

AN

? Retic. form.

Post. tub.

nu. solitary
tract

/

Pardbrachial nu.
] P

‘DW

v
-

Torus semicircularis '\«

—

Octavolateralis Placodes

middle

antero- posterior

dorsal

-—

santerodorsal . 9

4

o r—

|
5m [n\
— e

@ Canal neuromast

O Superficial neuromast

Striedter & Northcutt. Brains Through Time



Conserved affective-emotive construction
Direct visceral access to neural systems

Elasmobranchs Polypterus Teleosts

* Interoceptive signals converge onto a small B Y
set of highly conserved brainstem nuclel ST R
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Mental image-making and mapping cortices

Exteroceptive (body-in-world) and proprioceptive (brain-in-body) reference frames

* The “Image-making” cortices are also
highly conserved within mammalia,
reflecting ~200 million years of selection
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You have to care to be a “you”,
and you have to feel to care

Affective-interoceptive origin of
conscioushess

“We would not only need a model
of the brain functioning underlying
coupled coping such as Freeman’s,
but we would also need—and
here’s the rub—a model of our
particular way of being embedded
and embodied such that what we
experience is significant for us in
the particular way that it is.”

Dreyfus. (2007). Why Heideggerian Al failed. ..







