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Phaser cells & Swarmalators

The ubiquity of small multi-agent robotic platforms may help proliferate applications of 
autonomous technologies, but current control algorithms lack robustness and computational 
efficiency in complex environments. We suggest that this gap reflects the need for effective 
future-oriented reasoning for online replanning of distributed spatial tasks. Crucially, solutions to 
prospective spatial reasoning have evolved biologically in animals. Here, we introduce our 
analogy between the rodent brain circuits for spatial navigation and artificial swarms in the 
context of a recently discovered neuron, phaser cells, whose spatial activity we characterized as 
a strong, symmetric coupling between firing rate and spike phase relative to hippocampal theta 
oscillations. Phaser cells, found largely in the lateral septum and other subcortical regions (i.e., 
hippocampus, anteroventral thalamus, lateral hypothalamus, and nucleus accumbens), encoded 
space by assigning distinct phases to isocontour levels of external spatial inputs. In simulations, 
competitive learning embedded spatial phase codes into the weights of downstream 
path-integration networks and Bayesian decoding analysis revealed error correction at subsecond 
timescales. Thus, we outline a neurocomputational strategy in which location-dependent 
synchrony reconciles internal self-motion with external reference points and extend this strategy 
to the problem of online control of artificial robotic swarms. Our analogy suggests that spatial 
neurons and their firing fields are mathematically equivalent to robotic agents and their current 
positions. We assigned an internal phase state to each agent that is communicated to local 
neighbors using low-bandwidth pulsatile communication akin to phasic spiking. We show how the 
coupled spatial and phase dynamics of swarmalators with allothetic sensory inputs recapitulate 
the flexible spatial synchronization patterns observed in phaser cell simulations. Our findings 
demonstrate that swarming tasks including target tracking, patrol, and obstacle avoidance can 
benefit from this neural control paradigm to qualitatively improve agility, efficiency, and 
robustness in realistic environments.

Fig. 1. Two characterizations from recent research in neuroscience and applied mathematics 
motivated the ideas and approach of the current project. (A) Phaser cells are theta-rhythmic 
neurons located predominantly in the lateral septum. They were characterized by Monaco et 
al. (2019), supported by this NCS/FO award, as carrying a strong firing rate-coupled phase 
code for space. (B) The phaser cell code was theorized as a symmetric coupling distinct from 
typical hippocampal phase precession that may serve computational roles in path integration 

Fig. 2. A small swarm of kilobots that has implemented basic swarmalator control using color LED 
transceivers that detect phase information reflected off the surface. We have demonstrated simple 
swarming behaviors such as self-organzied aggregation, but equilibrium-based control methods 
are fundamentally limited in more complex problems. Video credit: Bryanna Yeh, JHU/APL.vv
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Phase-Coupled
Attraction

Swarmalators

• High-dimensional state estimation via sensor fusion (camera, IMU, etc.)

• Landmark-based feedback can drive decentralized correction of path integration among 
motion-dependent oscillators with a shared carrier rhythm

• Unified 2D simulation platform for swarm–network dual models in complex environments

• For agents as neurons (place cells), we consider that agent position is akin to place field 
location (e.g., place-field center-of-mass), inter-agent visibility to the presence of a synaptic 
connection, and inter-agent distance to the weight of that connection.

• Phase-coupled attraction in the 
swarmalator formulation can thus be 
expressed as a form of Hebbian 
learning within a place-cell network. Pre/post 
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... but the sensor model is dependent on both the state and the input:

• Critical applications require agility + useful sensory model estimates in 
complex, changing environments that make perception difficult:

• Larger groups of smaller agents (increasing N, decreasing mass) may 
provide a way, but current goal-directed control methods do not scale,

• Since angles can be viewed through the lens of Stiefel manifolds, we 
consider this an implicit representation of neural network models when 
an angular variable is converted to a unit vector inside the computations. 
This applies to models such as continuous attactor grid-cell networks [7] 
and oscillatory interference for path integration [8].

• The Kuramoto synchronization of swarmalators can be cast in 
geometric terms to be extended to arbitrary Stiefel manifolds [5] and 
product spaces of Stiefel manifolds [6]. This suggests a basic form of 
generalization of swarmalator dynamics to Stiefel manifolds as

... because they rely on exhaustive search and/or optimization procedures:

Phaser cells

Local Kuramoto
Phase Synchronization

or other functions of spatial navigation. (C) Swarmalators were developed by O’Keeffe, Hong, & 
Strogatz (2017) as a mathematical dynamical system that generalizes a class of collective biological 
behaviors observed in groups of animals, insects, and bacteria. The key idea is that mobile entities 
have an intrinsic phase state that that synchronizes (K>0) or desynchronizes (K<0) the population 
via Kuramoto coupling and guides the movements of individual agents. Groups of these ‘mobile 
oscillators’ can exhibit robust self-organizing dynamics.
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Agent size/footprint

• Smaller agents provide agility...
 • Max. angular acceleration ~ 1/L
 • Agent mass ~ Kinetic energy
 • Lower mass ~ Higher safety

• ... but fewer resources for autonomy:
 • Less sensor diversity & capacity
 • Low-power communications only
  • Restricts both command
     and peer-to-peer protocols
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• Damaged or unknown infrastructure
• Confined spaces
• GPS-denied areas

• Variable lighting or darkness
• Precipitation, moisture, or fog
• Small or complex access points

• Oscillatory interference 
theory suggests that arbitrary 
spatial functions can be 
encoded by the organization 
of phase-coding neurons: 
‘velocity-controlled oscillators’ 
(VCOs; Blair et al., 2010).
• Cue-driven feedback, 
perhaps via phaser cells 
(Monaco et al., 2019), 
provides robust correction of 
self-motion-based navigation, 
such as path integration.

• Inputs can be provided by 
an easily designed vector 
image file in Tiny SVG format:

• Changes in cue and reward structure are reflected in visibility masks of environment–agent interactions.

• ‘Active phase wave’ state of multi-agent swarmalators • Single-agent 
models in which a 
single ‘physical’ 
agent follows the 
resultant velocity 
flow of an internal 
‘mental’ swarm of 
agents

• Tile grid enables geometric masking of inter-agent (or recurrent 
neural) interactions based on current agent tile location
• Position updates are calculated according to swarmalator, neural 
network, or other model-based formulations using an internal, sub-
jective, or ‘preferred’ position, 
• Updates are maintained as vectors or 
averaged in single-agent paradigms, then
velocities are filtered through momentum,
kinetic energy constraints, and 
barrier-normal repulsion.

Visibility test

• The Stiefel manifold          defines the unit circle in the plane. This 
space is naturally identified with angles   by                              , such 
that for two angles    and   , it follows that                                   .   

where     is the auxiliary Stiefel manifold state and     is a skew- 
symmetric matrix of appropriate dimension.
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