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Neurodynamical computing at 
the information boundaries of 
intelligent systems



Toward a nonreductive dynamical 
neuroscience of intelligence

1. Briefly review disciplinary approaches to formalizing 
biological intelligence

• Highlight persistent gaps in concepts, theories, and 
hypotheses

2. Motivate a perceptual control framework for resolving 
external observer bias

• Informational implications for cognitive computing 
with neural dynamics

3. Synthesize structure and temporal properties of 
mammalian hippocampal-cortical networks

• Oscillations, dynamical articulation, and agency

Outline



• Cybernetics→
Cognitive Science

• GOFAI→
“Third Wave” AI learning and reasoning

• Behaviorist Psychology→
Mainstream neuroscience

• Physics of neural systems→
Computational neuroscience

Three paths…
Framing an integrative (computational) 
neuroscience of intelligence



Video Credit: J. Taxidis 

500x500 µm f.o.v. over mouse 
CA1 of synapsin-driven 
GCaMP6f during training in an 
olfactory working-memory task.



Inverting the input-output paradigm

1. Computational metaphors for the 
brain have entrenched the behaviorist 
bias that externally observable output 
is the endpoint of brain function

2. Neuroscience and AI have both 
embraced this bias, with either 
explicit or implicit input and output 
layers for computations

3. Implied control paradigm is one of 
building forward (predictive) models

External observer bias

Image Credit: Glazer et al. (PEGASOS) 



Hippocampus

Lateral Entorhinal 
Cortex (LEC)

Medial Entorhinal 
Cortex (MEC)

Boccara CN, et al. (2015). Hippocampus, 25: 838



Boccara CN, et al. (2015). Hippocampus, 25: 838
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Progressive articulation vs. forward models
Embodied cognition

Embodiment-first theories invert 
our view of cognition as integrating 
isolated channels of sensory 
information into unified internal 
models, to one of articulating 
dynamical boundaries within 
existing global states that already 
reflect an organism’s cumulative 
experience in its world (umvelt).

Monaco and Hwang. (2022). Cognitive Computation



Temporal unfolding and the locus of agency
Dynamical systems view of cognition

van Gelder. (1998). Behav Brain Sci, 21(5): 615



Perceptual control internalizes input, output, and goals

• Goal-setting autonomy recognizes the agency 
inherent in embodied living systems

• Animals have goals and those goals govern their 
behavior

• Environmental control is established through 
internal perceptual control of corresponding 
sensory input

Reorganizing the control flow

Mansell (ed.). (2020). International Handbook of Perceptual Control Theory



Perceptual control internalizes input, output, and goals
Reorganizing the control flow

Mansell (ed.). (2020). International Handbook of Perceptual Control Theory



Perceptual control internalizes input, output, and goals
Reorganizing the control flow

Mansell (ed.). (2020). International Handbook of Perceptual Control Theory

• Behavior is no longer the output of the 
neural system

• Outputs (Y0) are cascading internal 
reference signals

• The lowest control levels form the 
self–nonself boundary that interacts 
with the environment

• Internal perceptions of controlled 
environmental variables are controlled, 
not behavior



The generative role of behavior

• Optimal (Bayesian) inference in feedback-
driven generative models require active 
inference: actions that maximize model 
evidence by balancing internal active-state 
(self) entropy with external sensory-state 
(nonself) entropy.

• Agents learn massively distributed 
internal feedback models by adaptively 
balancing information streams arising at 
the self–nonself boundary.

Active inference

Friston K. Hierarchical models in the brain. PLOS Comput Biol. 2008;4: e1000211
Friston K. What is optimal about motor control? Neuron. 2011;72:488–98.
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Example

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



Location of scan firing

Example

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



Quantifying Lateral Head-Scan Behaviors

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



Unrolled Lap Position
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Run w/ no firing
Run w/ firing

Place-Field Firing

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



Significant Predictive Value: Scan Firing→Place-Field Event

• Scan Predictive Value:
Fraction of criterion scan-firing 
events that fall within the track-

angle bounds of a new or 
potentiated place field on the 
lap prior to the event (∆=–1)

• Overall Result:
Computed over all criterion 

scan-firing events in all 
animals (n=36), subregions 

(CA3, CA1), experiments 
(novelty vs. double rotation), 
training days, and session 

number (up to 5).

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



ROC Analysis: Place-Field Event→Prior Co-Localized Head Scan

• Abrupt place-field changes 
were diagnostically associated 
with significant high-firing head 
scans on the previous lap, with 
the association increasing to 
75% AUC as the specificity of 

spatial co-localization 
approached ±5º

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



Cognitive map-building driven by autonomous head-scan sampling
Active inference

Monaco JD, et al. (2014). Nature Neuroscience, 17: 725



(2) Temporal dynamics:

(3) Agentic interaction:

Integrative framework for neurodynamical cognition
(1) Network structure:

Monaco and Hwang. (2022). Cognitive Computation



(2) Temporal dynamics:

(3) Agentic interaction:

• Example: Nested oscillations with 
phase-amplitude coupling between 
levels of the pseudohierarchy

(1) Network structure:

Integrative framework for neurodynamical cognition

Monaco and Hwang. (2022). Cognitive Computation



(1) Network structure:

(2) Temporal dynamics:

(3) Agentic interaction:
• Example: Attentive head-scanning 

behavior (Monaco et al., 2014)

Integrative framework for neurodynamical cognition

Monaco and Hwang. (2022). Cognitive Computation



• Local oscillations and neuronal synchrony

• Temporal coding with oscillatory phase

• O’Keefe & Recce (1993) — Theta-phase 
precession of hippocampal place-field firing

Knierim & Zhang (2012)

• Emergent self-organizing states arising from 
recurrence and feedback in structured networks
• Hopfield networks (1982) — Pattern completion 

supports content-addressable memory with 
(limited) generalization

• Memory retrieval as a state-space trajectory 
that probes basins of attraction

Hedrick & Zhang (2016)

Hafting et al. (2008)

Temporal and Population Dynamics
Key Building Blocks

Monaco and Hwang. (2022). Cognitive Computation
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→ https://jdmonaco.com/pubs

Head scanning modifies cognitive maps
Monaco JD, Rao G, Roth ED, and Knierim JJ. (2014). Attentive scanning 

behavior drives one-trial potentiation of hippocampal place fields. Nature 
Neuroscience, 17(5), 725–731. doi: 10.1038/nn.3687

Neurodynamical principles for embodied intelligence

Monaco JD, Rajan K, and Hwang GM. (2021). A brain basis of dynamical 
intelligence for AI and computational neuroscience. ArXiv Preprint. 
arxiv:2105.07284

Monaco JD and Hwang GM. (2022). Neurodynamical computing at the information 
boundaries of intelligent systems. Cognitive Computation. 
doi: 10.1007/s12559-022-10081-9 

Papers


