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(1) Structural heterarchy (2) Oscillatory coupling (3) Agential interaction

Neurodynamical Computing: Selection and Interaction

Monaco, Rajan, and Hwang (2021) ArXiv Preprint. arxiv:2105.072842

What kinds of models are needed to advance this 
framework for cognitive flexibility?

https://arxiv.org/abs/2105.07284


(1) Network structure:  
• Hippocampal/cortical networks can be viewed as sparsely connected 

‘heterarchies’ (i.e., allowing some violations of strict hierarchy)

• Sparse heterarchies can emerge from simple developmental processes and/or 

network learning rules

• Aggregate log-skewed distributions of generalist vs. specialist cells  

(cf. Buzsaki, 2019, The Brain from Inside Out)
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• Aggregate log-skewed distributions of generalist vs. specialist cells  

(cf. Buzsaki, 2019, The Brain from Inside Out)

(2) Temporal dynamics:  
• The “spectral connectome” provides a spatiotemporal structure of oscillations (generally 

conserved across mammals) for phase-based control of message routing

• Timing and synchrony (incl. nonoscillatory) interact with recurrence-mediated dynamics 

underlying attractors, heteroclinic cycles, etc.
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• Aggregate log-skewed distributions of generalist vs. specialist cells  

(cf. Buzsaki, 2019, The Brain from Inside Out)

(2) Temporal dynamics:  
• The “spectral connectome” provides a spatiotemporal structure of oscillations (generally 

conserved across mammals) for phase-based control of message routing

• Timing and synchrony (incl. nonoscillatory) interact with recurrence-mediated dynamics 

underlying attractors, heteroclinic cycles, etc.

(3) Agential interaction:  
• Local affordances, constrained singular p.o.v., and limited self-guided interactions with 

the environment provide the foundation for sample-efficient lifelong learning

3 Monaco, Rajan, and Hwang (2021) ArXiv Preprint. arxiv:2105.07284
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Hippocampus

Lateral Entorhinal  
Cortex (LEC)

Medial Entorhinal  
Cortex (MEC)

Boccara CN, et al. (2015). Hippocampus, 25: 8387



Video Credit: R. GrievesNot Actual Speed
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Trace image: Hafting T, et al. (2008). Nature, 453: 1248
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Oscillatory Output (Inhibitory)

External Input (Excitatory)

How to Make an Oscillator

Monaco, et al. (2019) PLOS Computational Biology, 15: e100674111



How to Make a (Neuronal) Oscillator

Freeman (2000) How Brains Make Up Their Minds. Columbia University Press12
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Freeman (2000) How Brains Make Up Their Minds. Columbia University Press14 Izhikevich (2007) Dynamical Systems in Neuroscience. MIT Press

How to Make a (Neuronal) Oscillator



Nested Spiking/Bursting Oscillations

15 Izhikevich (2007) Dynamical Systems in Neuroscience. MIT Press



Dorsal Clock Neurons 
(Gap-Junction Coupled Networks)

Circadian Rhythmic Modulation of  
DN1p Firing Rate

Lim C & Allada R. (2013). Nature Neuroscience, 16: 1544 Flourakis, et al. (2015) Cell,162: 836

Optic Lobe Dorsal Clock Neurons (DN1p): Day vs. Night Firing Rates

“Day” 
(ZT6-8)

“Night” 
(ZT18-20)
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Conditional Mixture Density: Day Cells
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• Conditional Probabilities: 
Validate conditional 

second-order densities 
from mixture model 

against conditional timing 
data histograms

Statistical Model: Gaussian Mixture Captures Spike Timing
• Second-order timing: 
Normalize inter-spike 

intervals (ISIs) for each 
experiment to mean 1 and 

take the log to analyze 
adjacent intervals

Tabuchi, Monaco, et al. (2018). Cell, 175: 121317



• Slob regulates a large-conductance calcium-activated 
potassium (BK) channel in Drosophila

• Hypothesis:  
Slob-mediated BK 

enhances AHP 
amplitude and 

duration at night

Biophysical Neuron Model: Spike Waveforms→Firing Regularity

Tabuchi, Monaco, et al. (2018). Cell, 175: 121318



• Hodgkin-Huxley clock neuron 
model to demonstrate effects of 
diurnal modulation of KCa (BK) 
and Na+/K+ ATPase activity (via 

reversal potentials)                                                              

• In vivo spike waveforms 
and spike-timing rasters 
during Day (green) and 

Night (blue) epochs

Biophysical Neuron Model: Spike Waveforms→Firing Regularity
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Tabuchi, Monaco, et al. (2018). Cell, 175: 121319



Freeman (2000) How Brains Make Up Their Minds. Columbia University Press20

How to Make an Oscillatory Neural Pathway



Grid Cell in MEC

21 O’Keeffe & Recce (1993); Skaggs et al. (1996); Hafting et al. (2008)

Discovery Temporal Compression
Theta-Phase Precession of Place Cell Spikes



22 Maurer et al. (2012); Feng, Silva, & Foster (2015)

Periodic “look-ahead” to 
anticipate future positions

Construction of sequences 
of “cell assemblies” that 

preserve the temporal 
ordering of experience for 

learning and memory

What is the Function of Theta-Phase Precession?



Oscillatory Input (Inhibitory)

External Input (Excitatory)

Spikes

Membrane Voltage

How to Make a Spike-Field Phase Code

Monaco, et al. (2019) PLOS Computational Biology, 15: e100674123



Oscillatory Input (Inhibitory)

External Input (Excitatory)

Spikes

Membrane Voltage

Monaco, et al. (2019) PLOS Computational Biology, 15: e100674124

How to Make a Spike-Field Phase Code



Oscillatory Input (Inhibitory)

External Input (Excitatory)

Spikes

Membrane Voltage

Monaco, et al. (2019) PLOS Computational Biology, 15: e100674125

How to Make a Spike-Field Phase Code



A

B

C

Average Firing Rate vs.  
Burst (Earliest Spike) Phase

A

B

C

Spike Phase

Burst 

phase

How to Make a Negative Rate-Phase Correlation

Monaco, et al. (2019) PLOS Computational Biology, 15: e100674126



Image Credit: WikiMedia Commons

• Path integration — A computation of 
spatial position and orientation from 
internal heading & velocity signals (e.g., 
vestibular, proprioceptive, optic flow)


• Complementary to absolute 
orientation according to landmarks


• Self-motion is integrated over time, but 
so are errors: thus, path integration 
must be corrected, or reset, to the 
absolute frame of reference

Navigation Between Waypoints: The Problem of Path Integration

27



Subcortical Data from Theta-Rhythmic Brain Areas

Limbic system diagram: Tsanov M. (2017). Eur J Neurosci, 48: 278328



Negative Rate-Phase  
Correlation

Discovery of Lateral Septal ‘Phaser Cells’

Monaco, et al. (2019) PLOS Computational Biology, 15: e100674129



Negative Phaser  
Cell Model

Positive Phaser 
Cell Model

Bursting neuron models with spatial input 
and feedforward inhibition

Dynamical Data-Driven Phaser Cell Models

Monaco, et al. (2019) PLOS Computational Biology, 15: e100674130



Same preferred direction,  
Different spatial offsets

Spatial Phase Patterns  
Learned by 64 Target Neurons

Different preferred directions,  
Same spatial offset

Ph
as

er
 In

pu
t Downstream  

Theta-Bursting 
Target

Downstream Functional Decoding of Model Phaser Cells

Monaco, et al. (2019) PLOS Computational Biology, 15: e100674131



Phase Decoding of Target  
Population for Sample Trajectory

Ph
as

er
 In

pu
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Theta-Bursting 
Target

Different preferred directions,  
Same spatial offset

Same preferred direction,  
Different spatial offsets

Spatial Phase Patterns  
Learned by 64 Target Neurons

Downstream Functional Decoding of Model Phaser Cells

Monaco, et al. (2019) PLOS Computational Biology, 15: e100674132



Klausberger et al. (2003)

• In vivo recordings of 
parvalbumin-positive 

basket cells, with 
perisomal innervation 
of pyramidal neurons 

(i.e., place cells)

From theta to fast “ripple” transient oscillations



Video Credit: J. Taxidis 

Hippocampal 
In Vivo 2P  

Calcium  
Imaging

500x500 µm f.o.v. over mouse 
CA1 of synapsin-driven 
GCaMP6f during training in an 
olfactory working-memory task.



Hippocampal 
In Silico 

Model

CA3 pyr.

Synchronous 
Sharp Waves 
and Fast 
Gamma 
Oscillations

(NIH) Monaco & Zhang

Detailed CA3 
Microcircuit 
Model 





Credit: Dennis Dmitriev.  
youtube.com/watch?v=3JQ3hYko51Y

Credit: Jiannis Taxidis. doi: 10.1101/474510 
twitter.com/JiannisTax/status/1216922110150373376

Vs.

500x500 µm f.o.v. over mouse CA1 of synapsin-driven GCaMP6f 
during training in an olfactory working-memory task

19,794 hidden neurons, 3.61M synapses (2% shown)

Convolutional Network 
(MNIST, Backprop)

Mouse CA1 Hippocampus 
(Olfactory Task Learning)

https://www.youtube.com/watch?v=3JQ3hYko51Y
https://twitter.com/JiannisTax/status/1216922110150373376


Artificial Neural Networks Animals & Brains
Train/test splits, validation, convergence Continual learning through experience

Backpropagation is exact and highly successful Global credit assignment unclear
Massive (N >> p) single-domain datasets Finite multimodal samples across the lifespan

Noise helps! (E.g., dropout, float precision) Noise vs. variability? (E.g., “spontaneous” activity)
Dense activation over forward passes Sparse activation over hierarchies

Singular goals, infinite time horizon Many conflicting goals, overlapping timescales
Limited time dependence Oscillations, synchrony, STDP, eligibility traces, etc.

Recurrence out of favor (use transformers) Recurrence and feedback dominate
Global objective function Local, modular processing

Transfer learning nontrivial; o.o.d. samples bad Zero/one/few-shot generalization is typical
Input stimulus-driven operation Continuous internal operation

Models require external interpreter (tool) Brains construct their own meaning (agent)

(1)

(2)

(3)

Modern AI Models vs. Biological Learning

41



(1) Structural heterarchy (2) Oscillatory coupling (3) Agential interaction

Neurodynamical Computing: Selection and Interaction

Monaco, Rajan, and Hwang (2021) ArXiv Preprint. arxiv:2105.0728442

What kinds of models are needed to advance this 
framework for cognitive flexibility?

https://arxiv.org/abs/2105.07284


A murmuration of starlings



Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics. doi: 10.1007/s00422-020-00823-z 

Phaser and 

44

NeuroSwarms: Control by Phase-Organized Attractors

https://doi.org/10.1007/s00422-020-00823-z


(1) Structural heterarchy (2) Dynamical selection (3) Agential interaction

Inherit from 
spatial geometry

Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics. doi: 10.1007/s00422-020-00823-z 

Spatial phase coding with 
interagent coupling

Phase-Coupling Term

Visible cue input and 
reward approach

NeuroSwarms: Control by Phase-Organized Attractors

45

https://doi.org/10.1007/s00422-020-00823-z


Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 

Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics

Distance kernels to create 
synaptic weights

46

A Gaussian kernel for 
distance constructs a 
spatial attractor map 

in the connections

Knierim & Zhang (2012)
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Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 

Phase-Coupling Term

47 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics47



Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 
Neural Activation

48 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics

Total Recurrent Swarming Input

Phase-Coupling Term

Cues, IcRewards, Ir

Example Maze  
Environment

48



Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 

49 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics

Hebbian 
Learning via 
Oja’s Rule

‘Presynaptic’ 
Activity

‘Postsynaptic’ 
Activation

49



Slide Title

• Bullet point 1 

• Bullet point 2

Multi-Agent Swarming as Learning & Memory 

Inverted  distance kernels to 
calculate motion

50 Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics50



Cognitive Swarming: 
With Attractor Learning 

but Without Phase 
Coupling

Monaco, Hwang, Schultz, & Zhang 
(2020) Biological Cybernetics



Monaco, Hwang, Schultz, & Zhang 
(2020) Biological Cybernetics

Cognitive Swarming: 
With Phase Coupling 
and Identical Phase 

Initialization



Monaco, Hwang, Schultz, & Zhang 
(2020) Biological Cybernetics

Cognitive Swarming: 
With Phase Coupling 

and Random Phase 
Initialization



Monaco, Hwang, Schultz, & Zhang 
(2020) Biological Cybernetics

Cognitive Swarming: 
With Phase Coupling, 
Balanced Swarming 

and Reward Learning, 
and Multiple Rewards 

in a Complex and 
Irregular Maze



Monaco, Hwang, Schultz, & Zhang (2020) Biological Cybernetics. doi: 10.1007/s00422-020-00823-z 55

Single-Agent Swarm: 
Virtual Particle Swarm 
Guides a Single Agent 

(Green Circle) to 
Capture Multiple 

Rewards in an  
Irregular  Maze

https://doi.org/10.1007/s00422-020-00823-z


Monaco, Hwang, Schultz, & Zhang 
(2020) Biological Cybernetics

Single-Agent Swarm: 
Virtual Particle Swarm 
Guides a Single Agent 

(Green Circle) to 
Rewards in a Large and  

Fragmented Hairpin



Single-Agent Learning-as-Swarming: Double-T Maze

Monaco, Hwang, Schultz, & Zhang. (2020). Biological Cybernetics, 114: 269



PROGRAM SOLICITATION  
NSF 21-615



(2) Temporal dynamics:

(3) Agentic interaction:

Monaco, Rajan, and Hwang (2021) ArXiv Preprint. arxiv:2105.07284

(1) Network structure:

59

Neurodynamical Computing: Selection and Interaction

https://arxiv.org/abs/2105.07284


(2) Temporal dynamics:

(3) Agentic interaction:

• Example: Nested oscillations with 
phase-amplitude coupling between 
levels of the pseudohierarchy

Monaco, Rajan, and Hwang (2021) ArXiv Preprint. arxiv:2105.07284

(1) Network structure:

60

Neurodynamical Computing: Selection and Interaction

https://arxiv.org/abs/2105.07284


(1) Network structure:

(2) Temporal dynamics:

(3) Agentic interaction:
• Example: Attentive head-scanning 

behavior (Monaco et al., 2014)

Monaco, Rajan, and Hwang (2021) ArXiv Preprint. arxiv:2105.0728461

Neurodynamical Computing: Selection and Interaction

https://arxiv.org/abs/2105.07284


Hierarchical Generative Models and the “Spectral Connectome”

(Left) Bastos, …, Friston. (2012) Canonical Microcircuits for Predictive Coding. Neuron, 76, 695. 
(Right) Holms. (2021) The Hidden Spring. W. W. Norton & co.62



Inverting the Input-Output Sensorimotor Paradigm

Freeman (2000) How Brains Make Up Their Minds. Columbia University Press63



Inverting the Input-Output Sensorimotor Paradigm

Freeman (2000) How Brains Make Up Their Minds. Columbia University Press63



Communication Through Coherence (CTC) (Fries, 2005)

P. Fries. (2005) A mechanism for cognitive dynamics: neuronal communication 
through neuronal coherence. TICS, 9, 474.64
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Papers & Preprints • jdmonaco.com/pubs 
• @j_d_monaco

Spatial ‘phaser cells’ in the lateral septum
Monaco JD, De Guzman RM, Blair HT, and Zhang K. (2019). Spatial synchronization codes from 

coupled rate-phase neurons. PLOS Computational Biology, 15(1), e1006741. 
doi: 10.1371/journal.pcbi.1006741 

Head-scanning modifies place-field maps
Monaco JD, Rao G, Roth ED, and Knierim JJ. (2014). Attentive scanning behavior drives one-trial 

potentiation of hippocampal place fields. Nature Neuroscience, 17(5), 725–731. 
doi: 10.1038/nn.3687

Dynamical principles for neuroscience and AI
Monaco JD, Rajan K, and Hwang GM. (2021). A brain basis of dynamical intelligence for AI and 

computational neuroscience. ArXiv Preprint. arxiv:2105.07284

Cognitive swarming for multi-agent control
Monaco JD, Hwang GM, Schultz KM, and Zhang K. (2020). Cognitive swarming in complex environments 

with attractor dynamics and oscillatory computing. Biological Cybernetics, 114, 269–284. 
doi: 10.1007/s00422-020-00823-z 
https://rdcu.be/b3lem 
arxiv:1909.06711

Hadzic A, Hwang GM, Zhang K, Schultz KM, and Monaco JD. (2022). Bayesian optimization of distributed 
neurodynamical controller models for spatial navigation. Array, 15, 100218. 
doi: 10.1016/j.array.2022.100218

• Above work supported by NSF Award No. 1835279 “NCS-FO: Spatial Intelligence for Swarms Based on Hippocampal Dynamics”




