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• Neural inspired dynamics can be applied through the sw
formalism to elicit useful swarming behaviors, such as  
to track targets, avoid obstacles, and patrol assets 

• Future work includes  
1) Generalization of metacontroller to enable dynamic 

replanning that relinquishes swarmalator agents 
from a local minimum 

2) Identify existing models of neural computation that 
would benefit swarm behaviors 

3) Exploit paradigms that are unhindered by the constraints 
of biology to inspire future swarm designs

Introduction
Recently, Monaco et al.1 discovered a new class of neurons, 
coined “phaser cells,” revealing an internal timing code that can 
localize a rodent based on activation relative to the hippocampal 
theta oscillation (6–10 Hz) during locomotion. 
Swarmalators2(sw), a recently formulated mathematical model 
consisting of distributed agents that ‘sync and swarm,’ augment 
the spatial states of agents in the swarm with auxiliary phase 
states that are coupled to each other in the vein of the 
Kuramoto oscillator model.3 This coupling of spatial and phase 
states introduces novel swarming behaviors due to mobilization 
controlled by phase-dependent attraction/repulsion (eq. 1) and 
distance-dependent phase-synchronization (eq. 2). 

(1)

(2)

Motivating questions:
1. Can brain-inspired use of phase states improve swarming?
2. Can (generalized) auxiliary states produce elegant swarm 

control solutions that maintain stigmergic flavor of swarms?

Hypothesis: Bottom-up,  self-organized control based on neural
algorithms enables swarms to execute spatial tasks not achievable
using state-of-the-art decentralized control mechanisms. Conclusions
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Methods
For i = 1, …, N, where N is the population size, xi = (xi, yi) is the position of the i-th
swarmalator, and θi, ωi, and vi are its phase, natural frequency, and self-propulsion 
velocity. The functions Iatt and Irep refer to the spatial attraction and repulsion between 
swarmalators. The phase interaction is represented by Hatt. The function F in Eq. (1) 
measures the influence of phase similarity on spatial attraction. Function G in Eq. (2) 
measures the influence of spatial proximity on the phase attraction. J is the amplitude 
of F. When J > 0, swarmalators are attracted to the same phase; J < 0, swarmalators
are attracted to the opposite phase; J = 0, sw are phase agnostic. K represents the 
phase coupling strength such that when K > 0, the phase coupling between 
swarmalators tends to converge in phase. In contrast, when K < 0, phases tend to 
diverge. The auxiliary phase states θi provide an interface to neural coding 
mechanisms based on temporal coordination through shared oscillations.

We exploited the auxiliary phase states in the sw formalism to provide an interface to 
neural coding mechanisms based on spatial patterns of temporal coordination using 
phaser cell dynamics. We demonstrated how sw agents can be used to model spatial 
navigation tasks in simple and real-world complex environments. 

Phaser-inspired SwarmalatorsPhaser Cell Characteristics Neuro-inspired Metacontroller
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Swarmalators combine phase (color coding) and spatial 
dynamics to enable emergent behaviors among swarms of 
mobile oscillators. Each dot represents a robotic agent.

A phase-based control field can spatially guide the 
evolution of a target-tracking swarm and simulate bump-
like control similar to hippocampal place fields

Goal: A novel metacontroller that relinquishes swarmalator 
agents from a local minimum 

Note: This simulation is illustrative

Swarms of agents avoiding an obstacle in a computational 
task similar to mammalian navigation

Loop of swarmalating kilobots,
& swarmalator UAVs

Phaser cell populations collectively provide spatial patterns of 
synchrony that directly localize the spatial map to an allocentric 

A phase-based control field can spatially guide the evolution 
of a swarm and simulate patrol behavior along parametric 
trajectories

Figure adapted from O’Keeffe KP, Hong H & Strogatz SH. 
Nature Communications 8, 1504 (2017).
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reference frame. An example cell from lateral septum (A, left to
right): spikes and trajectory; firing ratemap; mean phase map.

In individual phaser cells, the phase variance of burst timing
reduces spatial phase information that can be decoded 
instantaneously. However, mean phase values are stable over
hours of recordings at particular locations in the environment.

In 5 rats, 101 recordings with phaser cells were made, including
45 “negative” phase-shifting cells and 24 “positive” phasers.
In theory, phaser cell populations with diverse spatial profiles
and locations of high phase coherence will collectively encode
a strong spatial signal in population-level phase synchrony.  

“VCO” Oscillator NetworkModel bursting neuron 
trained on model 
phaser cells (1000
negative, 1000 
positive). A “phase
attractor” captures
broad but stable 
spatial phase codes.

Data

All phaser unit-recordings (n = 101)
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